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We present general properties of the optical activity in noncentrosymmetric materials, including
superconductors. We derive a sum rule of the optical activity in general electric states and show
that the summation of the spectrum is zero, which is independent of the details of electric states.
The optical activity has a δ-function singularity that vanishes in normal phases. However, the
singularity emerges in superconducting phases, corresponding to the Meissner effect in the optical
conductivity. The spectrum decreases by the superconducting gap and has a missing area compared
to the normal phase. This area is exactly equivalent to the coefficient of the δ-function singularity due
to the universal sum rule. Furthermore, the coefficient is exactly equivalent to the superconducting
Edelstein effect, which has not yet been observed in experiments. Thus, this measurement of the
missing area offers an alternative way to observe the superconducting Edelstein effect.

I. INTRODUCTION

Optical responses are one of the key research topics
in condensed matter physics because they offer valu-
able insights into diverse material characteristics, such
as momentum-resolved electric spectral functions us-
ing angle-resolved photoemission spectroscopy, symme-
try breaking and associated domains using the Kerr effect
and the second harmonic generation. The wide range of
optical frequencies, spanning from microwaves to X-rays,
enables the investigation of phenomena across an exten-
sive spectrum of energy scales. Recently, terahertz spec-
troscopy is also attracting attention because important
energy scales exist in this regime in condensed matter
physics, such as the superconducting gap and collective
excitations of magnets [1].

Optical responses have also played an essential role in
the research of superconductors. It dates back to the ob-
servation of the superconducting gap in thin films of Pb
using the far-infrared ray in 1956, which gave the first ev-
idence of the superconducting gap [2]. Furthermore, the
optical conductivity has contributed to the identification
of the gap symmetry of superconductors and the exact
measurement of the superfluid density or the magnetic
penetration length through the use of a sum rule. This
measurement has been mainly done in high-temperature
superconductors [3–7]. In recent times, the research area
of optical responses in superconductors has been more di-
verse; the third harmonic generation observing the Higgs
mode [8] and the optical conductivity in noncentrosym-
metric superconductors [9–15] are energetically studied.

In this work, we will extend the study of optical re-
sponses to the optical activity in superconductors. The
optical activity represents one of the optical responses,
and it originates from the spatial dispersion of the optical
conductivity, exhibiting the optical rotation, the dichro-
ism, and the birefringence depending on material sym-
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metries [16–21]. It comprises two categories depending
on the existence of the time-reversal symmetry (T ). One
is the natural optical activity with T -symmetry, and the
other is the spatially-dispersive magneto-optical effect or
the optical magnetoelectric effect without T -symmetry.
Spatial inversion symmetry breaking is necessary for a fi-
nite optical activity, and it is observed in various systems
including chiral molecules as well as the noncentrosym-
metric crystals. Despite the ubiquity of optical activ-
ity, theoretical studies of optical activity have mainly
been carried out in molecular systems [22–26], and re-
search in solids is not developed to the same level. The
band theory of the optical activity in solids is developed
in some works [27–34], and it has been applied to var-
ious systems including chiral crystals [35–38], twisted
bilayer graphenes [39–44], and a topological antiferro-
magnet [45]. Recently, the optical activity is formulated
through the multipole theory in solids, revealing the cor-
respondence with molecular systems [46], and the first-
principle calculation is carried out based on this formu-
lation [47].
While there has been gradual progress in theoret-

ical studies about the optical activity in the normal
phase, the research in noncentrosymmetric superconduc-
tors remains largely unexplored, except for one work [29].
Recently, noncentrosymmetric superconductors have at-
tracted increasing attention [48], because they cause
novel superconducting states, such as parity-mixing su-
perconductors, topological superconductors, and helical
superconductors with finite momentum Cooper pairs.
They, furthermore, display unique magnetoelectric re-
sponses and nonreciprocal phenomena due to inversion
symmetry breaking, including the superconducting Edel-
stein effect [49], the magnetochiral anisotropy [50–52],
and the superconducting diode effect [53–56]. In addi-
tion, the optical activity will give valuable information
about these superconductors due to its uniqueness in
inversion-symmetry broken systems.
In this paper, we show the general properties of the op-

tical activity in noncentrosymmetric systems, including
superconductors. First, we discuss a sum rule of the opti-
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cal activity valid in all systems and reveal that the sum-
mation does not depend on material details and electric
states in Sec. II. Second, we formulate the optical activ-
ity using Green’s functions and discuss a no-go theorem
stating the absence of a δ-function singularity, meaning
that optical activity does not appear in equilibrium in
Sec. III. Furthermore, we show a typical optical spec-
trum calculated in a two-dimensional model, including a
Rashba spin-orbit coupling, and confirm this sum rule.
Third, we discuss the optical activity in noncentrosym-
metric superconductors in Sec. IV. In this section, we
formulate the optical activity for superconductors and
demonstrate that the no-go theorem is broken. For this
reason, the singularity appears, and the optical spectrum
of the optical activity is reduced compared to the normal
phase. This area is called the missing area and is exactly
equivalent to the coefficient of the δ-function singularity
because of the universal sum rule. Furthermore, we re-
veal that the missing area is exactly equivalent to the
superconducting Edelstein effect, where a magnetization
is induced by supercurrents, which has not been experi-
mentally observed. The relation established here by the
missing area provides an alternative way to observe this
effect. Furthermore, we also calculate the optical activity
in a two-dimensional noncentrosymmetric superconduc-
tor to verify the typical behavior of the missing area.
Finally, we conclude this paper in Sec. V.

II. SUM RULE OF THE OPTICAL ACTIVITY

In this section, we discuss a sum rule of the optical
activity. The optical activity is one of the responses to
light and, particularly, is related to the optical rotation
and the nonreciprocity due to the inversion symmetry
breaking. A similar effect is the magneto-optical effect,
which is not included in this paper because inversion sym-
metry breaking is unnecessary. The optical activity is
theoretically described by a spatially dispersive optical
conductivity. When applying an electromagnetic wave,
electric current, orbital moments and, also, spin moments
interact with the light. These responses are described by
a general current-current correlation function where the
current operator is conjugate to the electromagnetic vec-
tor potential and includes spin moments.

First, as a preparation, we discuss an exact symme-
try of the current-current correlation function Φµν(q, ω),
where q is the wave number and ω is the frequency.
The following relationship holds between this correlation
function and its complex conjugate as

Φ∗
µν(q, ω) = Φµν(−q,−ω). (1)

This derivation requires only the hermicity of the cur-
rent operator (see Appendix A for a detailed deriva-
tion). Next, we expand this correlation function by
the wave number q and discuss the symmetry of the
zeroth order Φµν(ω) = Φµν(0, ω) and the first order

term Φµνλ(ω) = ∂qλΦµν(0, ω). Separating the correla-
tion function into real and imaginary parts, we find that
the following symmetry relations for the frequency hold:

{
ReΦµν(−ω) = +ReΦµν(ω)

ImΦµν(−ω) = −ImΦµν(ω)
(2a){

ReΦµνλ(−ω) = −ReΦµνλ(ω)

ImΦµνλ(−ω) = +ImΦµνλ(ω).
(2b)

The zeroth order term is even for the real part and odd
for the imaginary part, and the opposite relation holds
for the first order term.
Next, we derive the sum rule. The spatially dispersive

optical conductivity is given by

σµν(q, ω) =
Φµν(q, ω)−Dµν

i(ω + iδ)
. (3)

Here, Dµν is the diamagnetic term, which is real. δ = +0
is an adiabatic factor. Using the equation limδ→+0 1/(ω+
iδ) = P/ω − iπδ(ω), the optical conductivity is divided
into the real part and the imaginary part as

Reσµν(q, ω)

= P
ImΦµν(q, ω)

ω
− πδ(ω)(ReΦµν(q, ω)−Dµν) (4a)

Imσµν(q, ω)

= −P
ReΦµν(q, ω)−Dµν

ω
− πδ(ω)ImΦµν(q, ω). (4b)

Here, δ(ω) is the δ-function and P is the principal value.
Similarly, expanding the optical conductivity by q, the
real part of the zeroth order term is an even function of
ω and the imaginary part is odd, which can be seen from
Eq. (2a). The opposite relation is satisfied for the first-
order term shown in Eq. (2b). The zeroth order term
is the usual optical conductivity, and the first order is
called the optical activity finite only in noncentrosym-
metric systems and the main quantity in this paper. For
the even functions, we can find the following sum rules.
Using the Kramers-Kronig relation, the sum rule for the
usual optical conductivity (the zeroth order) is estab-
lished [57], ∫ ∞

0

dωReσµν(ω) =
π

2
Dµν . (5)

Next, the sum rule for the optical activity reads (see Ap-
pendix A for a detailed derivation)∫ ∞

0

dωImσµνλ(ω) = 0. (6)

This relation is the first main result of this paper. This
equation means that the summation is zero and has uni-
versality due to the independence of material details.
This property will be important in the following discus-
sion. This sum rule is partially derived in molecule sys-
tems [22, 23], which are finite systems, and it has been
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further extended to infinite systems, crystals [27, 28, 46].
However, the derivation is limited to the noninteracting
band theory. On the other hand, Eq. (6) generalizes the
sum rule to systems without any assumption and is also
valid for, e.g., interacting systems and superconducting
states.

III. OPTICAL ACTIVITY IN
NONCENTROSYMMETRIC CRYSTALS

In this section, we discuss general properties, such as
symmetry constraints and a no-go theorem, and typical
behaviors of the optical activity in noninteracting crys-
tals.

A. Symmetry classification for the optical activity:
natural optical activity and optical magnetoelectric

effect

Response functions are, in general, constrained by
time-reversal symmetry, and this constraint is given by
the Onsager reciprocal theorem. The optical conductiv-
ity satisfies the reciprocal relation [18]

σµν(q, ω,M) = σνµ(−q, ω,−M). (7)

Here,M is a time-reversal symmetry-breaking term such
as an external magnetic field or a magnetization. Thus,
the symmetric and antisymmetric parts of the optical ac-
tivity behave differently for the interchange of the indices
µ↔ ν as [30, 46]

σ
(S)
µνλ(ω,M) = −σ(S)

µνλ(ω,−M) (8a)

σ
(A)
µνλ(ω,M) = +σ

(A)
µνλ(ω,−M). (8b)

These equations show that the symmetric part σ
(S)
µνλ is

odd and the antisymmetric part σ
(A)
µνλ is even under the

time-reversal operation T . Thus, the symmetric part
needs time-reversal breaking (M ̸= 0), but the antisym-
metric part does not. The optical activity is further re-
stricted by the spatial inversion symmetry. The optical
activity tensors are odd under the spatial-inversion op-
eration P, therefore, the antisymmetric part vanishes if
systems have PT symmetry. Because of the different
symmetry constraints of these parts, they are named dif-
ferently. The antisymmetric part is called the natural
optical activity (NOA) and the symmetric part is called
the optical magnetoelectric effect.

The NOA is mainly composed of the optical rotation
and the circular dichroism and has been studied for a
long time. It dates back to the first observation in 1811
by Arago, showing that a quartz displayed an optical
rotation. The NOA is often used to distinguish chiral
molecules because the enantiomers, which are the mir-
rored states, exhibit the NOA with opposite signs to the

original molecules. Furthermore, the NOA is also ac-
tive in chiral solids, such as Te and Se [58], and twisted
bilayer graphene, as we have noted in the introduction.
In the aspect of symmetry, the NOA can appear even
in T -symmetric systems and, then, purely reflects the
crystal symmetry. The antisymmetric optical activity

behaves as a rank-2 axial tensor αξλ = εµνξσ
(A)
µνλ (εµνξ

is a totally antisymmetric tensor), and this tensor is ac-
tive in gyrotropic point groups (GPGs) [59, 60]. GPGs
are divided into strong and weak GPGs, and weak GPGs
are composed of C3v,C4v,C6v. These two GPGs gen-
erate different types of the NOA. The optical rotation
is active in strong GPGs, however, it does not appear
in weak GPGs. On the other hand, weak GPGs dis-
play the Voigt-Fedorov dichroism or a specific reflection
phenomenon [61–63]. This phenomenon was observed,
for example, in CdS with C6v [64, 65]. Furthermore, in
spin-orbit coupled systems, the NOA includes the optical
Edelstein effect, where the AC current induces a dynam-
ical magnetization [66, 67].
The symmetric part can be decomposed into a rank-2

axial tensor βµξ = ενλξσ
(S)
µνλ and a rank-3 totally symmet-

ric tensor γµνλ = σ
(S)
µνλ + σ

(S)
νλµ + σ

(S)
λµν . βµξ corresponds

to the optical magnetoelectric response [20], and it in-
duces, e.g., the directional dichroism and the directional
birefringence. The response is observed in the typical
magnetoelectric material Cr2O3 [68, 69], and now the
magnetoelectric optics allows domain imaging of antifer-
romagnets [70–72]. Furthermore, the optical magneto-
electric response is now widely observed [21], and the
response caused by magnons in multiferroic magnets is
also reported [73, 74]. γµνλ is known to be an electric
quadrupole response [30, 46], which also induces the di-
rectional dichroism [33].

B. Green’s function formula of the optical activity
for noninteracting systems

We derive the Green’s function formula of the optical
activity for the noninteracting systems. The noninteract-
ing Hamiltonian without electromagnetic wave is

H0 =
p2

2m
+ V (x) +

1

4m2

(∂V (x)

∂x
× p

)
· σ. (9)

Here, p and x are the momentum and position opera-
tors, respectively, m is the mass of an electron, V (x) =
V (x+a) is a periodic potential, and σ is the Pauli matrix
representing the spin degrees of freedom. This Hamilto-
nian is diagonalized by the Bloch wave function |ψnk⟩
(k is the Bloch wave number and n is the band index)
as H0 |ψnk⟩ = ϵnk |ψnk⟩. For the following discussion,
we define the Bloch Hamiltonian Hk = e−ik·xH0e

ik·x

and the periodic part of the Bloch function |unk⟩ =
e−ik·x |ψnk⟩. Then, introducing electromagnetic waves
by the vector potential A(x, t), the momentum changes
as p→ p+eA(x, t) (−e < 0 is the charge of the electron)
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FIG. 1. (Left) The energy dispersion of the Rashba spin-orbit coupling model (Eq. 14). (Right) Numerical results of the
optical activity σzxx for the model Hamiltonian (Eq. 14). We set t = 1.0, α = 0.3, µ = −0.1 and Γ = 0.1. The mesh of the
wavenumbers in the BZ is 800 × 800. We set Energy and Ω in units of t, and σzxx in units of e2a/ℏ. In this unit, we assume
the electron mass m ≈ 1 · ℏ2/ta2.

and the Zeeman term is added. The first-order perturbed
Hamiltonian is given by

HA =
e

2

(
v ·A(x, t) +A(x, t) · v

)
(10a)

HB =
gSµB

2
(∂x ×A(x, t)) · σ. (10b)

Here, v = i[H0,x] is the velocity operator, gS = 2.002 · · ·
is the spin g-factor, and µB = e/2m is the Bohr magne-
ton. The generalized current operator J(r), conjugate to
the vector potential A(r, t) (r is just the position coor-
dinate, not the operator), is defined as

J(r) ≡ −δ(HA +HB)

δA(r, t)

= −e
2
{v, δ(r − x)}+ gSµB

2
(σ × ∂r)δ(r − x).

(11)

This current operator is the quantity induced by the in-
teraction with electromagnetic waves. Following the dy-
namical linear response theory given by the Kubo for-
mula, the current-current correlation function using the

Green’s functions is given by

Φµν(q,Ω)

=

∫
[d4k]f(ω)Tr

[
GRA(k−, ω)jµk,qG

R(k+, ω +Ω)jνk,−q

+GA(k−, ω − Ω)jµk,qG
RA(k+, ω)jνk,−q

]
. (12)

Here, GR/A(k, ω) = 1/(ω − Hk + µ ± iΓ) is the re-
tarded/advanced Green function, and we define GRA =
GR−GA, k± = k±q/2 and jµk,q = −evµk−

gSµB

2 (iq×σ)µ.
vµk = ∂Hk/∂kµ is the velocity operator of the Bloch
Hamiltonian, µ is a chemical potential, and f(ω) =
1/(eβω + 1) is the Fermi distribution function at tem-
perature 1/β. The integral symbol is abbreviated as∫
[d4k] =

∫∞
−∞ dω/(2πi)

∫
BZ
d3k/(2π)3. We phenomeno-

logically introduce the dissipation effect by assuming a
finite Γ. In this calculation, we neglect the diamagnetic
term Dµν because it does not contribute to the optical
activity due to the independence of q. The optical activ-
ity is attributed to the first-order term of this correlation
function by q, thus, two different contributions appear.
One is coming from the spin part in the current operator
jµk,q, and the other is the orbital contribution given by
the expansion of the Green’s function by q. In the follow-
ing, we focus on the spin contribution for simplicity and
only consider crystal symmetries and dimensions where
the orbital contribution is absent. The spin term is given
by

Φµνλ(Ω) =
iegSµB

2

∫
[d4k]f(ω)Tr

[
εµλθ

{
GRA(k, ω)σθG

R(k, ω +Ω)vνk +GA(k, ω − Ω)σθG
RA(k, ω)vνk

}
−ενλθ

{
GRA(k, ω)vµkG

R(k, ω +Ω)σθ +GA(k, ω − Ω)vµkG
RA(k, ω)σθ

}]
. (13)
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Then, we obtain the formula of the optical activity
σµνλ(Ω) = Φµνλ(Ω)/i(Ω + iδ).

C. No-go theorem and typical behaviors of the
optical activity

We discuss a general property, namely a no-go the-
orem, using the obtained formula (Eq. 13). The opti-
cal activity appears to have a singularity at ω = 0 due
to the δ-function in Eqs. (4a) and (4b). However, we
can prove that this singularity vanishes in the normal
phase. In fact, taking the limit Ω → 0, the integrand
in Eq. (13) can be rewritten as a total differential form
with respect to the wave number k using the fact that
GR/AvλkG

R/A = ∂λG
R/A, and thus Φµνλ(Ω = 0) = 0 re-

sulting in the singularity vanishing. This result shows
that the optical activity vanishes in equilibrium. How-
ever, this is not the case in superconductors as we will
discuss later.

Next, we calculate the optical activity in a simple
model and discuss the typical behaviors. We use a 2-
dimensional noncentrosymmetric system including the
Rashba spin-orbit coupling, however, we note that the
optical activity is also expected in other 3-dimensional
systems with other types of spin-orbit coupling. This
Hamiltonian reads

Hk =
∑
kσ

ϵkc
†
σkcσk + α

∑
kσσ′

gk · σσσ′c†σkcσ′k. (14)

Here, we define ϵk = −2t(cos kx + cos ky) and gk =
(sin ky,− sin kx, 0). In this paper, we set the lattice con-
stant a = 1. This model is T -symmetric and belongs to
the weak gyrotropic point group C4v. Thus, the sym-
metric part of the optical activity vanishes, however, the
antisymmetric part is not forbidden. For this symme-
try, there is only one finite component σyzy = −σzyy =
−σzxx = σxzx.

Figure 1 (Left) shows the energy dispersion and there is
a band splitting due to the spin-orbit coupling. Figure 1
(Right) shows the frequency dependence of the optical
activity σzxx at zero temperature. In the numerical cal-
culation, we set t = 1.0, α = 0.3, µ = −0.1, and Γ = 0.1.
There is a gap of about 0.1 ∼ 0.3 magnitude around the
chemical potential µ = −0.1 for direct transitions, not
changing the wave numbers k, as seen in Fig. 1 (Left). At
the frequency Ω equivalent to the gap, the imaginary part
of the optical activity changes its sign. The frequency de-
pendence, including the sign change, can be explained by
the concept of intraband and interband transitions. The
formula of the imaginary part of the optical activity in

the band representation is given by

Imσintra(A)
zxx (Ω) =

−egSµB

2

τ

(Ωτ)2 + 1

∑
nk

∂f(ϵ̃nk)

∂kx
σy
nn

Imσinter(A)
zxx (Ω)

=
egSµB

2

∑
n ̸=m,k

fmnk

ϵmnk

τ

τ2(ϵmnk − Ω)2 + 1
Re

[
vxkmnσ

y
nm

]
.

(15)

This equation is composed of two parts, the intraband ef-
fect and the interband effect. Here, we define the matrix
elementMmn = ⟨umk|M |unk⟩, fmnk = f(ϵ̃mk)−f(ϵ̃nk),
ϵmnk = ϵmk − ϵnk, and ϵ̃nk = ϵnk − µ. The intraband
effect is attributed to the Fermi surface and behaves like
the Drude form ∼ τ/(1+(Ωτ)2) as seen in Eq. (15). This
behavior can be seen at low frequencies in Fig. 1. On the
other hand, the interband effect is enhanced at the fre-
quency resonant with the band gap (∼ 0.2 in the current
model) as seen in Eq. (15), and Fig. 1 shows that the sign
of the spectrum changes at the corresponding frequency
Ω ∼ 0.2. We can confirm that the interband term pro-
vides this sign inversion due to the universal sum rule.
The low-frequency peak originating from the intraband
effect has a constant sign because of the Drude form. On
the other hand, the interband effect needs to show a spec-
trum with an opposite sign so as to cancel the spectrum
of the intraband effect and fulfill the universal sum rule
(the summation is zero in Eq. 6). Thus, the interband
term generates the high-frequency peak with the opp-
site sign. Furthermore, in the numerical result in Fig. 1
(Right), we can confirm the sum rule, and, in fact, the
summation of the area is zero (∼ −0.0001917 · · · ).

IV. OPTICAL ACTIVITY IN
NONCENTROSYMMETRIC

SUPERCONDUCTORS

In this section, we derive the optical activity in su-
perconductors using Green’s functions and discuss the
general properties, including the sum rule and the miss-
ing area. In addition, we confirm these properties by a
model calculation.

A. Green function formula of the optical activity
for superconductors

We formulate the optical activity for superconductors
with Green’s functions. In this paper, the superconduct-
ing state is treated in the mean-field approximation, and
it is described by the BdG Hamiltonian in the band rep-
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resentation

HBdG =
1

2

∑
knm

ψ†
nkH

BdG
knmψmk, (16a)

HBdG
k =

(
Hk − µ −∆k

−∆†
k −HT

−k + µ

)
. (16b)

Here, ψ†
k = (c†1k, · · · , c

†
Nk, c1−k, · · · , cN−k) is the Nambu

spinor, ∆k is the pair potential, which is the order pa-
rameter of superconductors. We define the transpose of
a matrixM asMT and the hermitian conjugate of a ma-
trix M as M†. The current-current correlation function
for the generalized current operator (Eq. 11) is given by

Φµν(q,Ω) =
1

2

∫
[d4k]f(ω)Tr

[
GRA

BdG(k−, ω)j̃
µ
k,qG

R
BdG(k+, ω +Ω)j̃νk,−q +GA

BdG(k−, ω − Ω)j̃µk,qG
RA
BdG(k+, ω)j̃

ν
k,−q

]
.

(17)

There are some differences from the formula for the normal state (Eq. 12). First, G
R/A
BdG(k, ω) = 1/(ω − HBdG

k +

ΣR/A(ω)) is the Green’s function for the BdG Hamiltonian, and ΣR/A(ω) represents the self-energy of the dissipation
effect. A specific form will be introduced later. Second, the current operator is expanded to the particle-hole Hilbert
space as

j̃µk,q =

(
jµk,q 0

0 −(jµ−k,q)
T

)
. (18)

Third, the prefactor 1/2 is introduced to prevent a double counting of the particle and hole degrees of freedom. After
a Taylor expansion by q, the first-order coefficient is decomposed into a spin contribution and an orbital contribution.
In this paper, we focus on the spin contribution, which is given by

Φµνλ(Ω) =
iegSµB

4

∫
[d4k]f(ω)Tr

[
εµλθ

{
GRA(k, ω)σ̃θG

R(k, ω +Ω)ṽνk +GA(k, ω − Ω)σ̃θG
RA(k, ω)ṽνk

}
−ενλθ

{
GRA(k, ω)ṽµkG

R(k, ω +Ω)σ̃θ +GA(k, ω − Ω)ṽµkG
RA(k, ω)σ̃θ

}]
(19)

Here, the spin operator σ̃θ and the velocity operator in
the Bloch basis ṽµk are different from the normal states.
They are defined as

σ̃θ =

(
σθ 0
0 −σT

θ

)
, ṽµk =

(
vµk 0
0 −(vµ−k)

T

)
. (20)

Then, we obtain the formula of the optical activity
σµνλ(Ω) = Φµνλ(Ω)/i(Ω + iδ).
In this section, we mainly focus on the spin contribu-

tion. Of course, the orbital part, in general, contributes
to the optical activity, and this part is partially studied
in previous works [29, 75].

B. Relation between the singularity and the
superconducting Edelstein effect

As discussed in Sec. III C, the singularity due to the δ-
function vanishes in the normal state. This result is guar-

anteed by the identity GR/AvλkG
R/A = ∂λG

R/A. How-
ever, we will see that a similar identity is not valid in su-
perconducting states. The Bloch velocity operator in su-
perconducting states is described by ṽµk (Eq. 20), and this

operator does not satisfy G
R/A
BdGṽ

λ
kG

R/A
BdG = ∂λG

R/A
BdG, even

if the pair potential ∆k is independent of the wavenum-
ber k. Thus, the integrand in Eq. (20) cannot be trans-
formed to a total differential form of k in the limit of
Ω → 0. This means that the singularity can generally
exist in superconducting states.

A similar singularity appears in the optical conduc-
tivity, and the coefficient corresponds to the superfluid
density [76]. The singularity corresponds to an equilib-
rium current, which is known to be the Meissner effect.
Recently, a similar singularity also appears in the non-
linear conductivity resulting in anomalous divergences in
the low-frequency regime [11], and the origin is the non-
reciprocal Meissner effect [77]. The coefficient of the sin-
gularity in the optical activity can also be interpreted by
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FIG. 2. (Left) Numerical results of the optical activity in the superconducting phase for several different pair potentials ∆.
We set t = 1, α = 0.3, µ = −0.1, and Γ = 0.1. (Right) Missing area. We plot the difference between the optical activity in

the normal phase Imσ
(n)
zxx and in the superconducting phase Imσ

(s)
zxx. The integration mesh of the wavenumber in the BZ is

800× 800. We use Ω and ∆ in units of t, and σzxx in units of e2a/ℏ.

a physical effect. The coefficient of the optical activity
can be rewritten as

ImΦµνλ(0) = εµλθKνθ − (µ↔ ν). (21)

Kνθ is the superconducting Edelstein response coeffi-
cient, where the supercurrent induces a magnetization
in noncentrosymmetric superconductors (Sν = KνθAθ or
Jν = KνθBθ). This response is firstly derived by Edel-
stein in polar superconductors with Rashba spin-orbit
coupling [49], and subsequent works [78–81] study it in
more details. Although the superconducting Edelstein
effect is an important response originating in the unique-
ness of noncentrosymmetric superconductors, it has not
yet been observed in experiments.

C. Missing area

The singularity due to the δ-function is difficult to
be directly observed in optical responses. However, it
can be exactly measured with the help of the sum rules
(Eqs. 5 and 6). These sum rules state that the summa-
tion of the area of the optical responses is independent
of material details and does not change before and after
superconducting transitions. Thus, the regular part in
the superconducting state, accessible in optical measure-
ments, appears to have a reduced area. This is called
the missing area and is absorbed in the contribution to
the δ-function. This exact relation is used to measure
the superfluid density and the penetration length by the
optical conductivity. This sum rule is called the Ferrell-
Glover-Tinkham (FGT) sum rule [3, 4], and the exact
measurement using this sum rule is mainly discussed in
high-temperature superconductors [5–7].

The discussion of the missing area can be extended to
the optical activity. The optical activity also satisfies the
sum rule (Eq. 6), which does not change before and after

phase transitions. Thus, the δ-function coefficients can
be exactly obtained from the missing area as∫ ∞

+0

dΩ
(
Imσ

(n)
µνλ(Ω)− Imσ

(s)
µνλ(Ω)

)
= −π

2
ImΦ

(s)
µνλ(0).(22)

Here, we label (n) and (s) for the normal state and
the superconducting state, respectively. As discussed in
Sec. IVB, the coefficient of the δ-function is equivalent to
the superconducting Edelstein response that has not yet
been observed in experiments. Thus, the missing area
measurement gives an alternative way to experimentally
determine the superconducting Edelstein effect.
Furthermore, we can directly determine the supercon-

ducting Edelstein effect only using the optical spectrum
in the superconducting phase. The sum rule states that
the summation is zero. Thus, the following equation is
established:∫ ∞

+0

dΩImσ
(s)
µνλ(Ω) =

π

2
ImΦ

(s)
µνλ(0). (23)

D. Model calculation for the optical activity in a
noncentrosymmetric superconductor

We analyze an optical spectrum of the optical activ-
ity in superconductors to verify the above discussion and
the missing area. We consider the same model used in
Sec. III C as the normal Hamiltonian Hk, and the su-
perconducting paring is uniform singlet. Thus, we set
∆k = i∆τy, where ∆ is real and τ is the Pauli matrix.
This model is one of the noncentrosymmetric supercon-
ductors including the Rashba spin-orbit coupling. Such
superconductors are discussed in the surface atomic-layer
superconductors on substrates [82] such as the monolayer
of FeSe [83, 84] and noncentrosymmetric bulk supercon-
ductors including heavy fermion superconductors with
large spin-orbit coupling [48].
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πImΦzxx(0)/2 and the missing area (MA)
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0
dΩImσ

(s)
zxx(Ω).

Ωc is the cut-off of the integration and we set Ωc = 2.0. We
set ∆ in units of t and SEE in units of e2a/ℏt.

We plot the optical spectrum of the optical activity
at various magnitudes of the pair potential ∆ in Fig. 2.
In this calculation, we phenomenologically introduce the
dissipation effect by multiplying a factor ηω obtained by
the first Born approximation [85] in the retarded Green’s
function as

GR
BdG(k, ω) =

1

ηωω −H
(n)
k + ηω∆ρx(iτy)

(24)

ηω = 1 + Γ

(
θ(|∆| − |ω|)√

∆2 − ω2
+
isign(ω)θ(|ω| − |∆|)√

ω2 −∆2

)
.

(25)

Here, H
(n)
k is the normal part of HBdG

k . ρ is the Pauli
matrix representing the particle-hole Hilbert space, θ(x)
is the step function, and sign(x) is the sign function re-
turning +1 if x > 0 and −1 if x < 0. This dissipation
effect is consistent with the normal phase introduced in
Sec. III B in the limit ∆ → 0. Figure 2 (Left) shows the
optical spectrum, and the weight vanishes for ω < 2∆.
The curve asymptotically approaches the curve of the
normal phase at the high-frequency regime because the
superconducting hybridization becomes small. Figure 2
(Right) shows the difference between the spectra of the
normal state and the superconducting state for visibility.
Figure 2 demonstrates that the origin of the missing area
comes from the superconducting gap, and the area dis-
appears in the high-frequency regime. Therefore, when
measuring this area, it is sufficient to observe it for small
frequencies corresponding to the energy scale of the su-
perconducting gap.

As discussed in Sec. IVC, the missing area offers the
exact measurement of the superconducting Edelstein ef-
fect. In this numerical calculation, we can confirm that
the relation is valid as seen in Fig. 3, where we plot both
the missing area and the direct calculation of the su-

perconducting Edelstein effect, and we can see that the
superconducting Edelstein effect and the missing area co-
incide.

V. CONCLUSION

We have investigated general properties of the optical
activity in noncentrosymmetric systems, including super-
conductors. We have derived the sum rule of the optical
activity as the property of a two-body correlation func-
tion, applicable to general electric states such as interact-
ing systems and superconductors. We have found that
the summation is zero, resulting in the independence of
material details in Sec. II. We have discussed the typical
behaviors of the optical activity in the normal phase in
Sec. III. We have formulated the optical activity using
Green’s functions and discussed a no-go theorem using
the obtained formula. The no-go theorem states that
the singularity from the δ-function at the zero frequency
Ω = 0 is absent, which means that the equilibrium cur-
rent is forbidden in normal states. In addition, we have
calculated the spectrum of the optical activity using a
model, including the spin-orbit coupling and seen that
there were two peaks with opposite signs in the spectrum.
One peak appears around the zero frequency Ω = 0, cor-
responding to the Drude peak (∼ τ/(1+ (Ωτ)2)) with fi-
nite relaxation time τ . This peak originates at the Fermi
surface. Another peak appears at high frequencies and
is enhanced around the band gap because this origin is
the interband effect. The reason why the two peaks have
the opposite sign is that the low-frequency peak from
the intraband effect has the constant sign, and the high-
frequency peak from the interband effect should show a
spectrum with an opposite sign so as to cancel it out due
to the sum rule (the summation is zero).
Next, we have discussed the optical activity in noncen-

trosymmetric superconductors in Sec. IV. We have for-
mulated the optical activity in the superconducting state
using Green’s functions and discussed some properties
using this formula. First, we have discussed a no-go the-
orem. In superconductors, the theorem no longer holds,
and the singularity from the δ-function can appear. Sec-
ond, we have found a characteristic sum rule similar to
the FGT sum rule. Due to the existence of the singularity
and the universal sum rule (Eq. 6), the spectrum of the
optical activity in the finite frequency regime is reduced,
and this missing area is equivalent to the coefficient of the
singularity (Eq. 22). Furthermore, we have showed the
coefficient is equivalent to the superconducting Edelstein
effect, which has not been observed in experiments since
the first proposal by Edelstein. Our result has showed
that the exact measurement of the missing area gives the
alternative way of the observation of the superconduct-
ing Edelstein effect. We have also calculated the optical
activity using a specific model of a s-wave noncentrosym-
metric superconductor with a spin-orbit coupling to in-
vestigate its typical spectrum. We have found that the
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missing area originates from the superconducting gap,
and that, in the frequency region beyond the supercon-
ducting gap, the spectrum asymptotically approaches the
normal phase case. Thus, it is sufficient to measure the
missing area in the low frequency range about the super-
conducting gap.
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Appendix A: Derivation of the sum rule

In this appendix, we derive the sum rule of the optical activity. At first, we show the symmetry relations (Eqs. 2a
and 2b). The current-current correlation function, in general, can be written in the Lehmann representation as

Φµν(q, ω) =
∑
lm

e−βEl − e−βEm

Z(ω + iδ − Elm)
⟨l| Jµ

q |m⟩ ⟨m| Jν
−q |l⟩ . (A1)

Here, Z = Tr[e−βH ] is the partition function. We use exact eigenstates |n⟩ and eigenvalues En of a given system
Hamiltonian H, and the current operator Jq =

∫
dxJ(r)e−iq·r. The current operator is Hermitian J†(r) = J(r),

thus J†
q = J−q. The complex conjugate of this correlation function is

Φ∗
µν(q, ω) =

∑
lm

e−βEl − e−βEm

Z(ω − iδ − Elm)
⟨m| Jµ

−q |l⟩ ⟨l| Jν
q |m⟩

=
∑
lm

e−βEm − e−βEl

Z(ω − iδ + Elm)
⟨l| Jµ

−q |m⟩ ⟨m| Jν
q |l⟩

= Φµν(−q,−ω). (A2)

Then, we can derive Eqs. (2a) and (2b) by expanding this equation in q.
Next, we move on to the derivation of the sum rule. The imaginary part of the optical activity is

Imσµνλ(ω) = −P
ReΦµνλ(ω)

ω
− πδ(ω)ImΦµνλ(ω). (A3)

The imaginary part is an even function of ω, while the real part is odd as we can see in Eq. (2b). Therefore, integrating
the imaginary part along the real-ω axis is given by∫ ∞

−∞
dωImσµνλ(ω) = 2

∫ ∞

0

dωImσµνλ(ω)

= −P

∫ ∞

−∞
dω

ReΦµνλ(ω)

ω
− πImΦµνλ(0)

= 0. (A4)

Here, we use the Kramers-Kroning relation, which is valid for retarded functions including Φµν(q, ω) due to the
analyticity in the upper half-plane of the ω-complex plane, at the third equality. Then, we obtain the sum rule
(Eq. 6).
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