[bookmark: _Hlk139969100][bookmark: _Hlk106290803]【한글자막】 React 완벽 가이드 with Redux, Next.js, TypeScript
React - The Complete Guide 2023 (incl. React Router & Redux)
[bookmark: _GoBack]
1. 섹센 제목 번역 필요
	번호
	Wjtb 섹션명
	번역(여기에 번역하시면 됩니다)
	비고

	3
	React Essentials - Components, JSX, Props, State & More
	
	새로생성

	4
	React Essentials - Deep Dive
	
	새로생성

	5
	React Essentials - Practice Project
	
	새로생성

	8
	Working with Refs & Portals
	
	제목변경필요

	9
	Practice Project: Project Management App (with Components, State, Refs & More)
	
	새로생성

	10
	React's Context API & useReducer - Advanced State Management
	
	새로생성

	11
	Handling Side Effects & Working with the useEffect() Hook
	
	제목변경필요

	12
	Practice Project: Building a Quiz App
	
	제목변경필요

[bookmark: _Hlk126163540]

2. 새로 생긴 강의명(영상, 자막 번역 및 생성 필요): 영상 230개
	번호
	강의명
	옆의 강의명을 번역하시면 됩니다
	비고

	9
	 Creating React Projects
	
	

	10
	 Why Do You Need A Special Project Setup?
	
	

	34
	 Module Introduction
	
	

	35
	 It's All About Components! [Core Concept]
	
	

	36
	 Setting Up The Starting Project
	
	

	37
	 JSX & React Components [Core Concept]
	
	

	38
	 Creating & Using a First Custom Component
	
	

	40
	 How React Handles Components & How It Builds A "Component Tree" [Core Concept]
	
	

	41
	 Using & Outputting Dynamic Values [Core Concept]
	
	

	42
	 Setting HTML Attributes Dynamically & Loading Image Files
	
	

	43
	 Making Components Reusable with Props [Core Concept]
	
	

	44
	 Alternative Props Syntaxes
	
	

	46
	 Best Practice: Storing Components in Files & Using a Good Project Structure
	
	

	47
	 Storing Component Style Files Next To Components
	
	

	48
	 Component Composition: The special "children" Prop [Core Concept]
	
	

	49
	 Reacting to Events [Core Concept]
	
	

	50
	 Passing Functions as Values to Props
	
	

	51
	 Passing Custom Arguments to Event Functions
	
	

	52
	 How NOT to Update the UI - A Look Behind The Scenes of React [Core Concept]
	
	

	53
	 Managing State & Using Hooks [Core Concept]
	
	

	54
	 Deriving & Outputting Data Based on State
	
	

	55
	 Rendering Content Conditionally
	
	

	56
	 CSS Styling & Dynamic Styling
	
	

	57
	 Outputting List Data Dynamically
	
	

	58
	 Module Summary
	
	

	59
	 Module Introduction
	
	

	60
	 You Don't Have To Use JSX!
	
	

	61
	 Working with Fragments
	
	

	62
	 When Should You Split Components?
	
	

	63
	 Splitting Components By Feature & State
	
	

	64
	 Problem: Props Are Not Forwarded To Inner Elements
	
	

	65
	 Forwarding Props To Wrapped Elements
	
	

	66
	 Working with Multiple JSX Slots
	
	

	67
	 Setting Component Types Dynamically
	
	

	68
	 Setting Default Prop Values
	
	

	69
	 Onwards To The Next Project & Advanced Concepts
	
	

	70
	 Not All Content Must Go Into Components
	
	

	72
	 New Project: First Steps Towards Our Tic-Tac-Toe Game
	
	

	73
	 Concept Repetition: Splitting Components & Building Reusable Components
	
	

	74
	 Concept Repetition: Working with State
	
	

	75
	 Component Instances Work In Isolation!
	
	

	76
	 Conditional Content & A Suboptimal Way Of Updating State
	
	

	77
	 Best Practice: Updating State Based On Old State Correctly
	
	

	78
	 User Input & Two-Way-Binding
	
	

	79
	 Rendering Multi-Dimensional Lists
	
	

	80
	 Best Practice: Updating Object State Immutably
	
	

	81
	 Lifting State Up [Core Concept]
	
	

	82
	 Avoid Intersecting States!
	
	

	83
	 Prefer Computed Values & Avoid Unnecessary State Management
	
	

	84
	 Deriving State From Props
	
	

	85
	 Sharing State Across Components
	
	

	86
	 Reducing State Management & Identifying Unnecessary State
	
	

	87
	 Disabling Buttons Conditionally
	
	

	88
	 Outsourcing Data Into A Separate File
	
	

	89
	 Lifting Computed Values Up
	
	

	90
	 Deriving Computed Values From Other Computed Values
	
	

	91
	 Tic-Tac-Toe Game: The "Game Over" Screen & Checking for a Draw
	
	

	92
	 Why Immutability Matters - Always!
	
	

	93
	 When NOT To Lift State Up
	
	

	94
	 An Alternative To Lifting State Up
	
	

	95
	 Final Polishing & Improving Components
	
	

	96
	 Module Introduction & A Challenge For You!
	
	

	97
	 Adding a Header Component
	
	

	98
	 Getting Started with a User Input Component
	
	

	99
	 Handling Events & Using Two-Way-Binding
	
	

	100
	 Lifting State Up
	
	

	101
	 Computing Values & Properly Handling Number Values
	
	

	102
	 Outputting Results in a List & Deriving More Values
	
	

	103
	 Outputting Content Conditionally
	
	

	104
	 Module Introduction & Starting Project
	
	

	105
	 Splitting CSS Code Across Multiple Files
	
	

	106
	 Styling React Apps with Vanilla CSS - Pros & Cons
	
	

	107
	 Vanilla CSS Styles Are NOT Scoped To Components!
	
	

	108
	 Styling React Apps with Inline Styles
	
	

	109
	 Dynamic & Conditional Inline Styles
	
	

	110
	 Dynamic & Conditional Styling with CSS Files & CSS Classes
	
	

	111
	 Scoping CSS Rules with CSS Modules
	
	

	112
	 Introducing "Styled Components" (Third-party Package)
	
	

	113
	 Creating Flexible Components with Styled Components
	
	

	114
	 Dynamic & Conditional Styling with Styled Components
	
	

	115
	 Styled Components: Pseudo Selectors, Nested Rules & Media Queries
	
	

	116
	 Creating Reusable Components & Component Combinations
	
	

	117
	 Introducing Tailwind CSS For React App Styling
	
	

	118
	 Adding & Using Tailwind CSS In A React Project
	
	

	119
	 Tailwind: Media Queries & Pseudo Selectors
	
	

	120
	 Dynamic & Conditional Styling with Tailwind
	
	

	121
	 Migrating The Demo App to Tailwind CSS
	
	

	122
	 Tailwind CSS: Pros & Cons
	
	

	134
	 The Starting Project
	
	

	137
	 Understanding React's "Strict Mode"
	
	

	139
	 Module Introduction & Starting Project
	
	

	140
	 Repetition: Managing User Input with State (Two-Way-Binding)
	
	

	142
	 Introducing Refs: Connecting & Accessing HTML Elements via Refs
	
	

	143
	 Manipulating the DOM via Refs
	
	

	144
	 Refs vs State Values
	
	

	145
	 Adding Challenges to the Demo Project
	
	

	146
	 Setting Timers & Managing State
	
	

	147
	 Using Refs for More Than "DOM Element Connections"
	
	

	148
	 Adding a Modal Component
	
	

	149
	 Forwarding Refs to Custom Components
	
	

	150
	 Exposing Component APIs via the useImperativeHandle Hook
	
	

	151
	 More Examples: When To Use Refs & State
	
	

	152
	 Sharing State Across Components
	
	

	153
	 Enhancing the Demo App "Result Modal"
	
	

	155
	 Introducing & Understanding "Portals"
	
	

	166
	 Module Introduction & Starting Project
	
	

	167
	 Adding a "Projects Sidebar" Component
	
	

	168
	 Styling the Sidebar & Button with Tailwind CSS
	
	

	169
	 Adding the "New Project" Component & A Reusable "Input" Component
	
	

	170
	 Styling Buttons & Inputs with Tailwind CSS
	
	

	171
	 Splitting Components to Split JSX & Tailwind Styles (for Higher Reusability)
	
	

	172
	 Managing State to Switch Between Components
	
	

	173
	 Collecting User Input with Refs & Forwarded Refs
	
	

	174
	 Handling Project Creation & Updating the UI
	
	

	175
	 Validating User Input & Showing an Error Modal via useImperativeHandle
	
	

	176
	 Styling the Modal via Tailwind CSS
	
	

	177
	 Making Projects Selectable & Viewing Project Details
	
	

	178
	 Handling Project Deletion
	
	

	179
	 Adding "Project Tasks" & A Tasks Component
	
	

	180
	 Managing Tasks & Understanding Prop Drilling
	
	

	181
	 Clearing Tasks & Fixing Minor Bugs
	
	

	182
	 Module Introduction
	
	

	183
	 Understanding Prop Drilling & Project Overview
	
	

	184
	 Prop Drilling: Component Composition as a Solution
	
	

	185
	 Introducing the Context API
	
	

	186
	 Creating & Providing The Context
	
	

	187
	 Consuming the Context
	
	

	188
	 Linking the Context to State
	
	

	189
	 A Different Way Of Consuming Context
	
	

	190
	 What Happens When Context Values Change?
	
	

	191
	 Migrating the Entire Demo Project to use the Context API
	
	

	192
	 Outsourcing Context & State Into a Separate Provider Component
	
	

	193
	 Introducing the useReducer Hook
	
	

	194
	 Dispatching Actions & Editing State with useReducer
	
	

	195
	 Module Introduction & Starting Project
	
	

	196
	 What's a "Side Effect"? A Thorough Example
	
	

	197
	 A Potential Problem with Side Effects: An Infinite Loop
	
	

	198
	 Using useEffect for Handling (Some) Side Effects
	
	

	199
	 Not All Side Effects Need useEffect
	
	

	200
	 useEffect Not Needed: Another Example
	
	

	201
	 Preparing Another Use-Case For useEffect
	
	

	202
	 Using useEffect for Syncing With Browser APIs
	
	

	203
	 Understanding Effect Dependencies
	
	

	205
	 Preparing Another Problem That Can Be Fixed with useEffect
	
	

	206
	 Introducing useEffect's Cleanup Function
	
	

	207
	 The Problem with Object & Function Dependencies
	
	

	208
	 The useCallback Hook
	
	

	209
	 useEffect's Cleanup Function: Another Example
	
	

	210
	 Optimizing State Updates
	
	

	234
	 Module Introduction & Starting Project
	
	

	235
	 A First Component & Some State
	
	

	236
	 Deriving Values, Outputting Questions & Registering Answers
	
	

	237
	 Shuffling Answers & Adding Quiz Logic
	
	

	238
	 Adding Question Timers
	
	

	239
	 Working with Effect Dependencies & useCallback
	
	

	240
	 Using Effect Cleanup Functions & Using Keys for Resetting Components
	
	

	241
	 Highlighting Selected Answers & Managing More State
	
	

	242
	 Splitting Components Up To Solve Problems
	
	

	243
	 Moving Logic To Components That Actually Need It ("Moving State Down")
	
	

	244
	 Setting Different Timers Based On The Selected Answer
	
	

	245
	 Outputting Quiz Results
	
	

	267
	 Module Introduction
	
	

	268
	 React Builds A Component Tree / How React Works Behind The Scenes
	
	

	269
	 Analyzing Component Function Executions via React's DevTools Profiler
	
	

	270
	 Avoiding Component Function Executions with memo()
	
	

	271
	 Avoiding Component Function Executions with Clever Structuring
	
	

	272
	 Understanding the useCallback() Hook
	
	

	273
	 Understanding the useMemo() Hook
	
	

	274
	 React Uses A Virtual DOM - Time To Explore It!
	
	

	275
	 Why Keys Matter When Managing State!
	
	

	276
	 More Reasons For Why Keys Matter
	
	

	277
	 Using Keys For Resetting Components
	
	

	278
	 State Scheduling & Batching
	
	

	279
	 Optimizing React with MillionJS
	
	

	290
	 Module Introduction
	
	

	291
	 How (Not) To Connect To A Database
	
	

	292
	 Starting Project & Dummy Backend API
	
	

	293
	 Preparing the App For Data Fetching
	
	

	294
	 How NOT To Send HTTP Requests (And Why It's Wrong)
	
	

	295
	 Sending HTTP Requests (GET Request) via useEffect
	
	

	296
	 Using async / await
	
	

	297
	 Handling Loading States
	
	

	298
	 Handling HTTP Errors
	
	

	299
	 Transforming Fetched Data
	
	

	300
	 Extracting Code & Improving Code Structure
	
	

	301
	 Sending Data with POST Requests
	
	

	302
	 Using Optimistic Updating
	
	

	303
	 Deleting Data (via DELETE HTTP Requests)
	
	

	304
	 Practice: Fetching Data
	
	

	319
	 Module Introduction & Starting Project
	
	

	320
	 Revisiting the "Rules of Hooks" & Why To Use Hooks
	
	

	321
	 Creating a Custom Hook
	
	

	322
	 Custom Hook: Managing State & Returning State Values
	
	

	323
	 Exposing Nested Functions From The Custom Hook
	
	

	324
	 Using A Custom Hook in Multiple Components
	
	

	325
	 Creating Flexible Custom Hooks
	
	

	338
	 Module Introduction & Starting Project
	
	

	339
	 What Are Forms & What's Tricky About Them?
	
	

	340
	 Handling Form Submission
	
	

	341
	 Managing & Getting User Input via State & Generic Handlers
	
	

	342
	 Getting User Input via Refs
	
	

	343
	 Getting Values via FormData & Native Browser APIs
	
	

	344
	 Resetting Forms
	
	

	345
	 Validating Input on Every Keystroke via State
	
	

	346
	 Validating Input Upon Lost Focus (Blur)
	
	

	347
	 Validating Input Upon Form Submission
	
	

	348
	 Validating Input via Built-in Validation Props
	
	

	349
	 Mixing Custom & Built-in Validation Logic
	
	

	350
	 Building & Using a Reusable Input Component
	
	

	351
	 Outsourcing Validation Logic
	
	

	352
	 Creating a Custom useInput Hook
	
	

	353
	 Using Third-Party Form Libraries
	
	

	372
	 Module Introduction & Starting Project
	
	

	373
	 Planning the App & Adding a First Component
	
	

	374
	 Fetching Meals Data (GET HTTP Request)
	
	

	375
	 Adding a "MealItem" Component
	
	

	376
	 Formatting & Outputting Numbers as Currency
	
	

	377
	 Creating a Configurable & Flexible Custom Button Component
	
	

	378
	 Getting Started with Cart Context & Reducer
	
	

	379
	 Finishing & Using the Cart Context & Reducer
	
	

	380
	 Adding a Reusable Modal Component with useEffect
	
	

	381
	 Opening the Cart in the Modal via a New Context
	
	

	382
	 Working on the Cart Items
	
	

	383
	 Adding a Custom Input Component & Managing Modal Visibility
	
	

	384
	 Handling Form Submission & Validation
	
	

	385
	 Sending a POST Request with Order Data
	
	

	386
	 Adding a Custom HTTP Hook & Avoiding Common Errors
	
	

	387
	 Handling HTTP Loading & Error States
	
	

	388
	 Finishing Touches
	
	

	659
	 Course Update Overview, Explanation & Migration Guide
	
	

3. Udemy-Wjtb 재생 시간 다른 강의(영상, 자막 번역 및 교체 필요): 영상 10개 (여기는 제목 번역은 필요 없음)
	
	wjtb강의명
	
	udemy강의명
	비고

	1
	 Welcome To The Course!
	1
	 이 코스에 오신 것을 환영합니다!
	

	5
	 About This Course & Course Outline
	5
	 이 코스 소개 및 개요
	

	6
	 The Two Ways (Paths) Of Taking This Course
	6
	 이 코스를 수강하는 두 가지 방법(경로)
	

	7
	 Getting The Most Out Of This Course
	7
	 강의를 최대한 활용하는 방법
	

	133
	 Module Introduction
	105
	 모듈 소개
	

	135
	 Understanding React Error Messages
	106
	 리액트 오류 메시지 이해하기
	

	136
	 Using the Browser Debugger & Breakpoints
	107
	 코드 흐름 및 경고 분석
	

	138
	 Using the React DevTools (Browser Extension)
	109
	 리액트 DevTools 사용하기
	

	430
	 Redux & Async Code
	288
	 리덕스 및 비동기 코드
	

	657
	 Course Roundup
	583
	 마무리하며
	

4. 텍스트 강의
	번호
	강의내용
	번역 (여기에 번역하시면 됩니다)
	비고

	39
	 A Closer Look: Components & File Extensions
At this point, you've built a first custom component and you, of course, also worked with the App component.
For the moment, both components are stored in the App.jsx file (this will change later though).
.jsx is a file extension that's not supported by the browser! It's working because you're working in a React project that supports this special extension. Because this extension "tells" the underlying build process (which is running behind the scenes when the development server is running) that a file contains JSX code (which is also not supported by browsers).
It's important to understand that it's really just that build process that cares about this extension.
And therefore, you'll also find React projects that don't use .jsx but instead just .js as a file extension. And in those .js files, you'll also find JSX code. Because it simply depends on the underlying build process which extension is expected when using this JSX syntax in a file.
Since it doesn't work in the browser either way, there is no hard rule regarding this. Instead, you'll find projects that require .jsx (like the project setup we use in this course) and you'll find projects that also support .js (with JSX code inside).
I'm emphasizing this here so that you're not confused if you encounter React projects that don't use .jsx files.
In addition, you'll also find projects that require the file extension as part of file imports (e.g., import App from './App.jsx') and you'll find other projects that don't require this (i.e., there, you could just use import App from './App').
This, again, has nothing to do with the browser or "standard JavaScript" - instead it simply depends on the requirements of the code build process that's part of the project setup you chose.

	
	

	45
	 More Prop Syntaxes
Beyond the various ways of setting and extracting props about which you learned in the previous lecture, there are even more ways of dealing with props.
But no worries, you'll see all these different features & syntaxes in action throughout the course!
Passing a Single Prop Object
If you got data that's already organized as a JavaScript object, you can pass that object as a single prop value instead of splitting it across multiple props.
I.e., instead of
1. <CoreConcept
2. title={CORE_CONCEPTS[0].title}
3. description={CORE_CONCEPTS[0].description}
4. image={CORE_CONCEPTS[0].image} />
or
1. <CoreConcept
2. {...CORE_CONCEPTS[0]} />
you could also pass a single concept (or any name of your choice) prop to the CoreConcept component:
1. <CoreConcept
2. concept={CORE_CONCEPTS[0]} />
In the CoreConcept component, you would then get that one single prop:
1. export default function CoreConcept({ concept }) {
2. // Use concept.title, concept.description etc.
3. // Or destructure the concept object: const { title, description, image } = concept;
4. }
It is entirely up to you which syntax & approach you prefer.
Grouping Received Props Into a Single Object
You can also pass multiple props to a component and then, in the component function, group them into a single object via JavaScript's "Rest Property" syntax.
I.e., if a component is used like this:
1. <CoreConcept
2. title={CORE_CONCEPTS[0].title}
3. description={CORE_CONCEPTS[0].description}
4. image={CORE_CONCEPTS[0].image} />
You could group the received props into a single object like this:
1. export default function CoreConcept({ ...concept }) {
2. // ...concept groups multiple values into a single object
3. // Use concept.title, concept.description etc.
4. // Or destructure the concept object: const { title, description, image } = concept;
5. }
If that syntax is a bit confusing - worry not! You'll also see concrete examples for this syntax (and for why you might want to use it in certain situations) throughout the course!
Default Prop Values
Sometimes, you'll build components that may receive an optional prop. For example, a custom Button component may receive a type prop.
So the Button component should be usable either with a type being set:
1. <Button type="submit" caption="My Button" />
Or without it:
1. <Button caption="My Button" />
To make this component work, you might want to set a default value for the type prop - in case it's not passed.
This can easily be achieved since JavaScript supports default values when using object destructuring:
1. export default function Button({ caption, type = "submit" }) {
2. // caption has no default value, type has a default value of "submit"
3. }

	
	

	71
	 Closer Look: public/ vs assets/ for Image Storage
The public/ Folder
As shown in the previous lecture you can store images in the public/ folder and then directly reference them from inside your index.html or index.css files.
The reason for that is that images (or, in general: files) stored in public/ are made publicly available by the underlying project development server & build process. Just like index.html, those files can directly be visited from inside the browser and can therefore also be requested by other files.
If you try loading localhost:5173/some-image.jpg, you'll be able to see that image (if it exists in the public/ folder, of course).
The src/assets/ Folder
You can also store images in the src/assets/ folder (or, actually, anywhere in the src folder).
So what's the difference compared to public/?
Any files (of any format) stored in src (or subfolders like src/assets/) are not made available to the public. They can't be accessed by website visitors. If you try loading localhost:5173/src/assets/some-image.jpg, you'll get an error.
Instead, files stored in src/ (and subfolders) can be used in your code files. Images imported into code files are then picked up by the underlying build process, potentially optimized, and kind of "injected" into the public/ folder right before serving the website. Links to those images are automatically generated and used in the places where you referenced the imported images.
Which Folder Should You Use?
You should use the public/ folder for any images that should not be handled by the build process and that should be generally available. Good candidates are images used directly in the index.html file or favicons.
On the other hand, images that are used inside of components should typically be stored in the src/ folder (e.g., in src/assets/).

	
	

	123
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	141
	 Repetition: Fragments
In earlier versions of this course, this section also introduced the concept of "React Fragments" (<Fragment> ... </Fragment> or <> ... </>).
The newer version of the course already introduced this concept in the "React Essentials" sections.
But since it's a key concept that will be used throughout the entire course (and, in general, in pretty much all React projects), it's time for a brief refresher!
When writing JSX code, there's one important rule: A JSX value must have only one root element.
For example, the following code would be invalid and cause an error:
1. return (
2. <h2>Welcome!</h2>
3. <p>React is awesome!</p>
4.);
So would this code:
1. const content = (
2. <h2>Welcome!</h2>
3. <p>React is awesome!</p>
4.);
In both snippets, the JSX value has two sibling root elements - and that's not allowed!
One solution would be to wrap these elements into a <div> - which then acts as a single root JSX element:
1. return (
2. <div>
3. <h2>Welcome!</h2>
4. <p>React is awesome!</p>
5. </div>
6.);
This would work and therefore is an acceptable solution.
But it has a downside: You now have that extra <div> in your DOM - even though you don't really need it (besides for getting rid of the this error).
That's why React offers a better solution: A special JSX element called "React Fragment".
It can be used as a wrapper to ensure that there's only one root JSX element whilst at the same time not rendering any DOM element.
You can use it like this:
1. import { Fragment } from 'react';
2.
3. // ... other code ...
4.
5. return (
6. <Fragment>
7. <h2>Welcome!</h2>
8. <p>React is awesome!</p>
9. </Fragment>
10.);
Most React projects (e.g., projects created with Vite or create-react-app) offer an even shorter form:
1. // no import needed
2.
3. return (
4. <>
5. <h2>Welcome!</h2>
6. <p>React is awesome!</p>
7. </>
8.);

	
	

	154
	 Closing the Modal via the ESC (Escape) Key
The <dialog> element allows website visitors to close the opened dialog by pressing the ESC (Escape) key on their keyboard.
Currently, this will not trigger the onReset function though (unlike closing the dialog with a button click).
To make sure that onReset gets triggered when the dialog is closed via the escape key, you should add the built-in onClose prop to the <dialog> element and bind it to the onReset prop value.
Like this:
1. <dialog ref={dialog} className="result-modal" onClose={onReset}
2. ...
3. </dialog>

	
	

	156
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	204
	 Fixing a Small Bug
The <dialog> element can also be closed by pressing the ESC key on the keyboard. In that case, the dialog will disappear but the state passed to the open prop (i.e., the modalIsOpen state) will not be set to false.
Therefore, the modal can't be opened again (because modalIsOpen still is true - the UI basically now is not in sync with the state anymore).
To fix this issue, we must listen to the modal being closed by adding the built-in onClose prop to the <dialog>. The event is then "forwarded" to the App component by accepting a custom onClose prop on the Modal component.
The Modal component therefore should look like this:
1. import { useRef, useEffect } from 'react';
2. import { createPortal } from 'react-dom';
3.
4. function Modal({ open, children, onClose }) {
5. const dialog = useRef();
6.
7. useEffect(() => {
8. if (open) {
9. dialog.current.showModal();
10. } else {
11. dialog.current.close();
12. }
13. }, [open]);
14.
15. return createPortal(
16. <dialog className="modal" ref={dialog} onClose={onClose}>
17. {children}
18. </dialog>,
19. document.getElementById('modal')
20.);
21. }
22.
23. export default Modal;
In the App component, we can now set the handleStopRemovePlace function as a value for the onClose prop on the <Modal> component:
1. <Modal open={modalIsOpen} onClose={handleStopRemovePlace}>
2. <DeleteConfirmation
3. onCancel={handleStopRemovePlace}
4. onConfirm={handleRemovePlace}
5. />
6. </Modal>

	
	

	211
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	246
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	305
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	326
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	354
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	389
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	717
	 COURSE UPDATE: Switching to the Updated Content
This course received an update - learn more in this video and the announcements section.
To continue with the new, updated content, go to this lecture.

	
	

	739
	 COURSE UPDATE: Switch to Updated Content
This course received an update - learn more in this video and the announcements section.
To continue with the new, updated content switch to this lecture.

	
	

5. 퀴즈
1) [bookmark: _Toc150779123]제목
	퀴즈
	
	

	1
	Components & JSX
	

	2
	Dynamic Values & Props
	

	3
	Best Practices & Event Handling
	

	4
	State & Computed Values
	

	5
	Conditional Content & Dynamic Lists
	

2) [bookmark: _Toc150779124]퀴즈 1
	문제
	보기
	
	

	1
	
	From the perspective of a developer: What's one advantage of building a user interface by combining components?
	

	
	1
	Better performance
	

	
	
	That's wrong. Whilst you will later learn about techniques that allow you to improve application performance, components on their own do NOT provide a performance benefit. The overall app is the same, no matter if you split it into components or not.

	

	ㅇ
	2
	Small, reusable building blocks
	

	
	
	That's correct! As a developer, it's typically easier to work on smaller, more manageable building blocks. In addition, if a certain building block must be used in different parts of the UI, you can simply reuse it (instead of copying & pasting it) if built as a component.

	

	
	3
	More powerful features
	

	
	4
	Can build advanced websites
	

	2
	
	양식의 맨 위
When working with React: How is a new component defined?양식의 맨 아래

	

	
	1
	By adding a custom element like <Header /> to your HTML code
	

	
	
	That's wrong. That's how you would USE a custom component - but it's now how you DEFINE it.
	

	
	2
	By using JSX in your code files
	

	
	
	That's wrong. Custom components do indeed typically use JSX code and they are also typically used inside of JSX code but they're not DEFINED just by using JSX code.
	

	ㅇ
	3
	By creating a function that returns JSX code
	

	
	
	That's correct! A component, in React, is simply a function that returns renderable content - typically JSX code. After being defined, a custom component can be used like a built-in HTML element inside of other components' JSX code.

	

	
	4
	By using React's createComponent() function
	

	3
	
	양식의 맨 위
What's the purpose of JSX?양식의 맨 아래

	

	
	1
	It allows you to create custom components and elements
	

	
	
	That's wrong. Whilst you will typically use your components in JSX code, JSX is actually not a prerequisite. It's also not required to create custom components - instead that's done by creating a JavaScript function.

	

	
	2
	It allows you to work with React and components
	

	
	
	That's wrong. JSX is used a lot in React but you could use React without JSX.

	

	
	3
	It's required by React
	

	
	
	That's wrong. JSX is used a lot in React but you could use React without JSX.
	

	ㅇ
	4
	It allows you to define the target HTML code inside of your components
	

	
	
	That's correct. The idea behind JSX is that you have an easier time defining the target HTML code that should be generated by your components.

	

	4
	
	양식의 맨 위
Which statement about JSX is TRUE?
양식의 맨 아래

	

	ㅇ
	1
	JSX code is used to define the target UI / HTML code
	

	
	
	That's correct. JSX allows you to define the target UI / HTML code right inside your JavaScript code - and therefore right inside your components.

	

	
	2
	JSX code can only be used to output custom components
	

	
	3
	JSX code would run in the browser
	

	
	4
	JSX code must be stored in .html files
	

	5
	
	양식의 맨 위
What does React do with the components you use in the JSX code?
양식의 맨 아래

	

	
	1
	It generates a HTML file that's then served by the browser
	

	
	
	That's wrong. React does not generate any HTML file.
	

	ㅇ
	2
	It derives a component tree that's then used to perform commands that update the website DOM
	

	
	
	That's correct. Your JSX code leads to a tree-like code structure that "tells" React how the different components are related and how the UI should look like. It then executes appropriate commands to manipulate the real DOM to reflect that target structure / code.
	

	
	3
	It derives a HTML file that's then used to perform commands that update the website DOM
	

	
	4
	It generates a component tree that's then translated to an HTML file
	

	6
	
	How do you typically use custom components?
	

	ㅇ
	1
	You use custom components like HTML elements inside of JSX code
	

	
	
	That's correct!
	

	
	2
	You call the custom component functions inside of other component functions
	

	
	3
	You pass the custom component functions as identifiers to ReactDOM's render() method
	

	
	4
	You use custom components in the index.html or any other HTML file
	

	7
	
	Which statement about custom components is FALSE?
	

	
	1
	Custom components can be created as JavaScript functions
	

	
	
	That's the wrong choice because this statement is right. Custom components are created by simply defining a JavaScript function
	

	
	2
	To use custom components in JSX, they must start with an uppercase character
	

	
	
	That's the wrong choice because this statement is right. To use custom components in JSX code, their name must start with an uppercase character. That's how React tells them apart from built-in components / elements.
	

	
	3
	Custom components must return renderable content (typically JSX)
	

	
	
	That's the wrong choice because this statement is right. Custom components do indeed need to return renderable content.

	

	ㅇ
	4
	Custom components must be defined next to the components that want to use them
	

	
	
	That's the right choice because this statement is WRONG. You can define custom components wherever you want.

	

3) 퀴즈 2
	문제
	보기
	
	

	1
	
	양식의 맨 위
	

	
	
	Which syntax can be used to output dynamic values / JavaScript expressions in JSX?
	

	
	1
	[] (Square brackets)
	

	
	
	That's wrong. Using square brackets in your JSX code will simply display some square brackets on the screen.
	

	
	2
	() (Parentheses)
	

	
	
	That's wrong. Using parentheses in your JSX code will simply display some parentheses on the screen.
	

	ㅇ
	3
	{ } (Curly braces)
	

	
	
	That's correct!
	

	
	4
	{{ }} (Double curly braces)
	

	2
	
	Which values can be output as dynamic values in JSX (i.e., between curly braces)?
	

	
	1
	Any valid JavaScript statement
	

	
	
	That's wrong. JavaScript statements like function definitions, if-statements etc. can't bet used as part of your JSX code / between curly braces in JSX code.

	

	
	2
	Any valid React template instruction
	

	
	
	That's wrong - there is no such thing as a "React template" or "React template instruction".

	

	ㅇ
	3
	Any valid JavaScript expression
	

	
	
	That's correct. You could output expressions like "1 + 1", variables / constants that hold values, the result of calling a function etc.
	

	
	4
	Any valid React template expression
	

	3
	
	How should you typically load / use images in React projects?
	

	
	1
	Set the src equal to a relative string path to the image
	

	
	
	That's wrong. Whilst this might work in some projects during development, chances are high that the paths would be incorrect after building the project for production and deploying it.

	

	ㅇ
	2
	Set the src equal to the path generated via an import statement (that points at the image)
	

	
	
	That's correct. By "importing" the image, a production-safe path gets generated under the hood.
	

	
	3
	Set the src equal to an absolute string path to the image
	

	
	4
	Set the src equal to the image itself
	

	4
	
	How can you assign a dynamic value to an HTML element attribute?
	

	ㅇ
	1
	Via the same syntax you use for dynamic values in JSX in general: Curly braces
	

	
	
	That's correct. You simply replace the text value you would normally set for attributes with the dynamic (curly-brace-wrapped) value.
	

	
	2
	Via the special React attribute directive that can be added to all built-in and custom components
	

	
	3
	Via the same syntax you use for attributes in general: You set the value as a hard-coded string
	

	
	4
	Via the special React template attribute syntax that allows you to store dynamic values for attributes
	

	5
	
	Which core React concept can increase the reusability of React components
	

	
	1
	JSX
	

	
	
	That's wrong. JSX is definitely an important concept (especially for components) but it's not increasing the reusability.

	

	
	2
	Classes
	

	
	
	That's wrong. Classes don't have anything to do with that.

	

	
	3
	Functions
	

	
	
	That's wrong. Components are indeed defined as functions but that's true for all components - no matter how reusable they may be.

	

	ㅇ
	4
	Props
	

	
	
	That's correct! Props are essentially custom attributes that can be set on components.

	

	6
	
	How do "props" work in React?
	

	
	1
	You can set props ("custom attributes") on components to automatically output them in the component's JSX code
	

	
	
	That's wrong, props can be set as described but they're not output in the JSX code automatically.

	

	ㅇ
	2
	You can set props ("custom attributes") on components to then extract & use them in the receiving component
	

	
	
	That's correct! React automatically passes a props object as the first argument to the receiving component

	

	
	3
	You can set props ("custom attributes") on components which then receive them as automatically provided constants in the function body
	

	
	4
	You can set props ("custom attributes") on components which can then call a getProps() function to extract the received values
	

	7
	
	Which of the following four code examples for setting & extracting props would NOT work as intended?
I.e., which example will NOT output the text "Priority: 5" on the screen.
	

	
	1
	That's not the right choice. This syntax might look weird (and indeed also is unnecessarily complicated) but it would work. You can use "Rest properties" to group properties that have not been "pulled out" via destructuring into a new object ("props" in this case). So the "priority" prop could be extracted from the props object as shown.

	

	
	2
	That's not the right choice. React automatically passes a "props" object as a first argument to the component function. This object contains all props ("custom attributes") as key-value pairs (i.e., as properties). So accessing "priority" on "props" will work

	

	
	3
	That's not the right choice. This example will work as React automatically passed an object with all "custom attributes" as a first argument to the component function. Object destructuring can then be used as shown in this example to "pull out" the props the component needs.

	

	ㅇ
	4
	That's the right choice. The error is subtle but this example does NOT use object destructuring. So here, the "priority" prop is not pulled out of the props object. Instead, it's now the entire props object that's named "priority". This wouldn't be a problem since the name is up to you. But it's now the entire object that's output in the paragraph, not the "priority" property. Therefore, the output would not be "Priority: 5" but instead "Priority: [Object object]" (or something like that).

	

4) 퀴즈 3
	문제
	보기
	
	

	1
	
	How should you typically store your component functions?
	

	
	1
	All in one big file.
	

	
	
	That's wrong. You can do that and if you prefer that approach, it's okay. But it's not recommended because it makes the code less maintainable.

	

	
	2
	All in one component.
	

	
	
	That's wrong. Storing components inside of other components does not just lead to maintainability issues but also to performance issues.

	

	ㅇ
	3
	Split across multiple files (one component per file)
	

	
	
	That's correct - this is the recommended approach.

	

	
	4
	Split across multiple projects
	

	2
	
	What's the purpose of the special "children" prop?
	

	ㅇ
	1
	You can use it to pass and use content between your component's opening & closing tags.
	

	
	
	That's correct. "children" will receive whichever content you pass between the opening and closing tags of your component.

	

	
	2
	You're not allowed to use it since it's used internally by React.
	

	
	3
	You can use it to use a component more than once.
	

	
	4
	You can use it to pass data to built-in components (between their opening and closing tags)
	

	3
	
	How can you handle user events in React projects?
	

	
	1
	Via the built-in onEvent prop (e.g., onEvent('click'))
	

	
	
	That's wrong, there is no such built-in prop.

	

	
	2
	Via the built-in addEventListener() method (e.g., addEventListener('click'))
	

	
	
	That's wrong. Whilst this is how you would add event listeners to elements in vanilla JavaScript, that's not how you do it in React projects.

	

	
	3
	Via the built-in on-xyz prop (e.g., on-click)
	

	
	
	That's wrong - there are no built-in props like this

	

	ㅇ
	4
	Via the built-in onXYZ props (e.g., onClick)
	

	
	
	That's correct. The built-in elements support props like onClick to allow you to define functions that should be triggered when the specified event occurs.

	

	4
	
	To execute code upon events, which value must be passed to event props like onClick?
	

	
	1
	Any expression of your choice (e.g., onClick={age = 5})
	

	
	
	That's wrong. The expression code would be executed when the element with the prop is first rendered / evaluated, NOT when the event occurs.

	

	
	2
	A string value that contains the name of the function that should be executed (e.g., onClick="handleClick")
	

	
	
	That's wrong. This code wouldn't do anything and it would especially NOT lead to the handleClick function being executed

	

	ㅇ
	3
	A pointer to the function that should be executed (e.g., onClick={handleClick})
	

	
	
	That's correct. By using this code, React is able to call handleClick() when the event occurs.

	

	
	4
	The function execution of the function that should be executed (e.g., onClick={handleClick()})
	

	5
	
	How can you "configure" the execution of an event-dependent function (e.g., define which arguments get passed to it)?
	

	
	1
	You can't
	

	
	
	That's wrong, there are ways of gaining more control.

	

	
	2
	By executing the function yourself (e.g., onClick={handleClick(5)})
	

	
	
	That's wrong - this code will lead to the handleClick() function being executed too early (when the element to which the prop is added is evaluated / rendered for the first time). The function will NOT be executed when the event occurs.

	

	
	3
	By adding an event listener via the addEventListener() method (e.g., addEventListener('click'))
	

	
	
	That's wrong, using this method in React is pretty much always wrong. It's not the "React way" of handling events. You should use the event props (onClick etc).

	

	
	4
	By wrapping the function with another function (e.g., onClick={() => handleClick(5)})
	

	
	
	That's the correct choice! By wrapping the execution of your event handling function with another function, it's that other function that's passed as a value to the event-handling prop. Therefore, your main function (=> handleClick in this example) does NOT get executed too early but instead only when the event occurs.

	

5) 퀴즈 4
	문제
	보기
	
	

	1
	
	What's the purpose of "State" in React apps?
	

	
	1
	It's data that's passed to other components
	

	
	
	That's wrong - that's the "props" concept

	

	ㅇ
	2
	It's data that, when changed, causes React to re-evaluate a component
	

	
	
	That's correct! The component to which the state belongs and its child and descendent components will be re-evaluated as state changes.

	

	
	3
	It's data that, when changed, always causes React to re-evaluate all components in the app
	

	
	4
	It's data that, when changed, can't be passed to components anymore
	

	2
	
	There are two "Rules of Hooks". Which of the following statements is NOT TRUE according to those rules?
	

	ㅇ
	1
	You must not call React Hooks next to other Hooks.
	

	
	
	That's the right choice because this statement is false - you ARE ALLOWED to call as many Hook function as needed. And they may (and often will) be positioned directly next to each other.

	

	
	2
	You must not call React Hooks outside of the component function.
	

	
	3
	You must not call React Hooks inside of if statements.
	

	
	4
	You must not call React Hooks inside of nested functions.
	

	3
	
	Will the following code work?
1. import { useState } from 'react';
2.
3. function SomeComponent() {
4. const [selected, setSelected] = useState(false);
5.
6. function handleClick() {
7. const [selected, setSelected] = useState(true);
8. }
9.
10. return <button onClick={handleClick}>Select</button>
11. }

	

	ㅇ
	1
	No
	

	
	
	That's the correct choice. This code violates the "Rules of Hooks" as it calls a Hook function inside of a nested function.

	

	
	2
	Yes
	

	
	
	Yes, if no SomeComponent is not nested into some other component
	

	4
	
	What's the idea behind "derived state" / "computed values"?
	

	
	1
	It's an older pattern that shouldn't be used anymore - use state instead.
	

	
	
	That's wrong - you absolutely should use computed values / derived state whenever possible.

	

	
	2
	Computed values are values that should be managed as separate state which is then derived from other state values.
	

	
	
	That's wrong, the idea is to NOT manage them as extra state.

	

	ㅇ
	3
	Computed values are values that shouldn't be managed as separate state since they can be derived from other state.
	

	
	
	That's correct.
	

6) 퀴즈 5
	문제
	보기
	
	

	1
	
	Which of the following code snippets WILL NOT output the content conditionally?
	

	
	1
	That's the wrong choice because this code will work. You can display content conditionally with help of the logical AND operator (&&)

	

	
	2
	That's the wrong choice because this code will work. You can display content conditionally with help of a ternary expression.

	

	
	3
	That's the wrong choice because this code will work. You can display content conditionally with help of a conditionally set variable.

	

	ㅇ
	4
	That's the right choice because this code won't work. There is no default "show" prop that could be set on built-in elements to show (or hide) them.

	

	2
	
	Which code snippet WILL WORK and output a list dynamically?
	

	
	1
	That's the wrong choice - there is no built-in list function.

	

	ㅇ
	2
	That's the right choice!

	

	
	3
	That's the wrong choice - there is no built-in transform function.

	

	
	4
	That's the wrong choice because this code will not work. You can't use a for loop inside of JSX code and output content like this.

	

	3
	
	What's the problem with this code?
1. <div>
2. {someArray.map(item => <p>{item}</p>)}
3. </div>

	

	
	1
	You can only map to , not to <p>
	

	
	
	That's wrong, you don't have to use

	

	
	2
	You can only output list data between tags, not <div>
	

	
	
	That's wrong - you can output dynamic data anywhere you want.

	

	ㅇ
	3
	You should add a key prop to the list item
	

	
	
	That's the right choice because that's the problem with this code. When dynamically outputting a list of elements, every element should receive a unique "key" to help React tell the list items apart.

	

	
	4
	You should add a list prop to the
	

	
	
	That's wrong, this answer doesn't make any sense. There is no "list" prop that could be set.

	

6. 코딩연습
	번호
	강의명
	번역 (여기에 번역하시면 됩니다)

	3
	Building & Using a Component
	

	4
	Outputting Dynamic Content
	

	5
	Working with Props
	

	6
	Component Composition
	

	7
	Reacting to Events
	

	8
	Configuring Event Handlers
	

	9
	Working with State
	

	10
	Conditional Content
	

	11
	Dynamic Styling
	

	12
	Dynamic List Content
	

	13
	Using Fragments
	

	14
	Forwarding Props
	

	15
	Creating Flexible Components
	

	16
	Two-Way-Binding
	

	17
	Dynamic Styling with Inline Styles
	

	21
	Exercise: Fix Errors
	

	22
	Accessing DOM Elements with "refs"
	

	23
	Managing Other Values with Refs
	

	24
	Forwarding Refs
	

	25
	Exposing Component APIs
	

	26
	Working with Portals
	

	27
	Creating & Using Context
	

	28
	Using useReducer()
	

	번호
	　
	내용
	번역 (여기에 번역하시면 됩니다)

	3
	지침
	　 Building & Using a Component
Your task is to create a new MainGoal component which outputs a paragraph of text that describes your main course goal (e.g., "My main goal: Learn React in-depth and from the ground up").
You'll have to create this new component from scratch and then use it inside the App component's JSX code.
The finished app could look like this:
[image:]
(notice the "My main goal: Learn react from the ground up" text at the bottom)
Important: To ensure that the automatic checks correctly detect your solution, your component must be called MainGoal and it also must be exported. To do that, simply add the export keyword in front of your MainGoal component.
The MainGoal component also must contain the text "My main goal:" (followed by whatever your main course goal is).
	　

	　
	학습목표
	　 Create a basic React component and use it in the JSX code of another component.
	　

	　
	힌트
	· 　 Keep in mind that components are defined as JavaScript functions
· Component functions must return renderable content - typically JSX code
· Don't forget to export the MainGoal component function (export function MainGoal() {...}) - otherwise the automatic tests won't detect your solution correctly
· Don't forget to include the text "My main goal" in the text output by your MainGoal component - otherwise the automatic tests won't detect your solution correctly
	　

	　
	해답설명
	　 In this provided solution (see below), a new component function named MainGoal is created.
This function returns a <p> element that contains the text "My main goal: Learn React from the ground up.".
That's an important first step, because this code defines this custom component.
It does, however, not use this component yet.
To use it, you have to include it like a custom HTML element in the JSX code of some other component - in this case of the App component.
There, at very end of the returned JSX code, you'll find the <MainGoal /> component being used like a custom element.
1. export function MainGoal() {
2. return <p>My main goal: Learn React from the ground up.</p>;
3. }
4.
5. function App() {
6. return (
7. <div id="app">
8. <h1>Time to Practice!</h1>
9. <p>
10. Build a <code><MainGoal></code> component and insert it below this
11. text.
12. </p>
13. <p>
14. Your <code><MainGoal></code> component should simply output some
15. text that describes your main course goal (e.g., "My main goal:
16. Learn React in great detail").
17. </p>
18. <p>
19. Important: You custom component must contain the text
20. "My main goal:"
21. </p>
22. <p>
23. Also important: For the automatic checks to succeed,
24. you must export your custom component function! Not as
25. a default but simply by adding the <code>export</code> keyword in front
26. of your function (e.g., <code>export function YOUR_COMPONENT_NAME</code>
27.).
28. </p>
29. {/* DON'T CHANGE THE TEXT / CONTENT ABOVE */}
30. {/* OUTPUT YOUR COMPONENT HERE */}
31. <MainGoal />
32. </div>
33.);
34. }
35.
36. export default App;
	　

	4
	지침
	Outputting Dynamic Content
Your task is to fill the already existing User component with some life! You should output the user's first name and last name (stored in the also already existing userData object) inside of the User component's <h2> element.
In addition, you should output the title (also stored in userData) in the <p> element inside the User component.
You're not allowed to copy & paste the values into the component.
The finished app could look like this:
[image:]
	　

	　
	학습목표
	　 Output the name and title of a user in a new User component.

	　

	　
	힌트
	 Don't copy & paste the values - instead reference the userData object in the User component's JSX code
 Remember that you can output dynamic data (including variables, constants etc) via curly braces: { someData }
	　

	　
	해답설명
	　 In this solution (see below), the user's first name, last name and title is output dynamically by using JSX' "curly brace" syntax.
For example, { userData.title } is replaced with the actual string value stored in userData.title when the component is rendered to the screen.

1. export const userData = {
2. firstName: 'Maximilian',
3. lastName: 'Schwarzmüller',
4. title: 'Instructor',
5. };
6.
7. export function User() {
8. return (
9. <div id="user" data-testid="user">
10. <h2>
11. {userData.firstName} {userData.lastName}
12. </h2>
13. <p>{userData.title}</p>
14. </div>
15.);
16. }
17.
18. function App() {
19. return (
20. <div id="app">
21. <h1>Time to Practice</h1>
22. <p>Welcome on board of this course! You got this 💪</p>
23. <User />
24. </div>
25.);
26. }
27.
28. export default App;
	　

	5
	지침
	　 Working with Props
Your task is to make the CourseGoal component reusable / configurable. It should accept a "title" and a "description" input and output the received data between the <h2> (title) and <p> (description) tags.
The App component should then render at least two instances of the CourseGoal component.
One of those CourseGoal components must receive a title of "Learn React" and a description of "In-depth". The other titles and descriptions are entirely up to you.
The finished app could look like this:
[image:]
	　

	　
	학습목표
	Build and use a reusable CourseGoal component to display a list of your goals for this course.
	　

	　
	힌트
	·
· Use the props concept to make a component configurable & reusable
· Keep in mind that every component receives a props object - automatically, provided by React
· Set prop values by adding them as key-value pairs (like "custom attributes") on your components when using them in JSX code
· The received props object contains all the "attributes" you set on the component (when using it in JSX code) as properties
	　

	　
	해답설명
	In this solution (see below), the CourseGoal component expects to get a title and description prop. The prop values are retrieved from the incoming props object (which is automatically provided by React) via object destructuring.
This is 100% optional, the values could alternatively have been retrieved via props.title and props.description (when not using destructuring => function CourseGoal(props) { ... }).
title and description are then output in the JSX code via curly braces.
The CourseGoal component is then rendered by the App component. The App component sets the values for the title and description props by adding them like HTML attributes to the CourseGoal component.

1. export function CourseGoal({ title, description }) {
2. return (
3.
4. <h2>{title}</h2>
5. <p>{description}</p>
6.
7.);
8. }
9.
10. function App() {
11. return (
12. <div id="app" data-testid="app">
13. <h1>Time to Practice</h1>
14. <p>One course, many goals! 🎯</p>
15.
16. <CourseGoal
17. title="Learn React"
18. description="In-depth"
19. />
20. <CourseGoal
21. title="Practice"
22. description="Practice working with React, components etc"
23. />
24.
25. </div>
26.);
27. }
28.
29. export default App;
	　

	6
	지침
	Component Composition
Your task is to create a reusable Card component that takes a name prop as an input and, in addition, can be wrapped around any JSX code.
Use the already existing Card.js file to create the Card component in there. You can add the card CSS class to the main wrapping element in that component for some styling.
The name prop should be output as a title inside the Card component, the wrapped JSX code should be output below that title.
For example, the final Card component, should be usable like this:
1. <Card name="Maria Miles">
2. <p>
3. Maria is a professor of Computer Science at the University of Illinois.
4. </p>
5. <p>
6. Email Maria
7. </p>
8. </Card>
This should yield the following visual output:
[image:]
You can, but don't have to, tweak and edit the JSX code returned by the App component.
	　

	　
	학습목표
	Build a reusable Card component that can be used as a wrapper around any JSX code.
	　

	　
	힌트
	· 　 Don't forget to export the Card component (as a default)
· Remember that the Card component should be wrappable around JSX code AND, in addition, must accept & output a name prop
· Not sure how to wrap a component around JSX code? Remember that there is a special, built-in prop that's passed to every component by React...
	　

	　
	해답설명
	In this solution, a new Card component function is created and exported.
1. export default function Card({ name, children }) {
2. return (
3. <article className="card">
4. <h2>{name}</h2>
5. {children}
6. </article>
7.);
The Card component function destructures the (automatically) received props object to "pull out" to prop values:
· name
· children
The children prop is a special prop that's automatically provided to every component function. It contains the wrapped content as a value.
So the children prop's value for this code:
1. <Card>
2. <p>Hi there</p>
3. </Card>
would be <p>Hi there</p>.
The Card component then outputs the received name between <h2> tags (though you can output via any HTML tags of your choice - you don't have to use <h2>!).
The children prop is then output directly below that title. Therefore, any content passed between the <Card> opening and closing tags is output below the <h2> element.

	　

	7
	지침
	Reacting to Events
Your task is to work on a "User Login" component that has already been prepared by a colleague.
The goal is to update the data stored in the already existing user object with some dummy data once the "Login" button in the App component is pressed.
The email and password properties in the user object should be set to any non-empty string values of your choice. The loggedIn field should be set to true.
Important: You don't have to fetch the values entered into the <input> fields - you can simply ignore those fields for now. You'll learn how to listen to keystrokes and get user input later in the course.
	　

	　
	학습목표
	Handle user events in a React app and enhance a "User Login" form by changing data stored in an object once the user clicks the "Login" button.
	　

	　
	힌트
	 Keep in mind that you can use special, built-in props on those built-in elements to "connect" functions to event listeners
 Maybe the names of those special props start with on?
 Keep in mind that you can use function as values
 It shouldn't be you who executes the event handling function
 Update the user data via user.email = "new value" etc.
	　

	　
	해답설명
	In this solution (see below), a new handleLogin function is added inside the App component. This function is then used as a value for the onClick prop which was added to the <button> element.
The built-in elements (like <button>) support those special onXYZ props to "connect" event handling functions to user events & elements.
Important: handleLogin is not executed (i.e., it's onClick={handleLogin}, not onClick={handleLogin()}) since it should be React which executes those functions (when a "click" event occurs).

1. export const user = {
2. email: '',
3. password: '',
4. loggedIn: false,
5. };
6.
7. // Please note: The login does not actually work!
8. // This exercise is just about practicing event handling
9. // You'll learn how to add user authentication to React apps later in the course!
10. function App() {
11. function handleLogin() {
12. user.email = 'test@example.com';
13. user.password = 'test';
14. user.loggedIn = true;
15. }
16.
17. return (
18. <div id="app">
19. <h1>User Login</h1>
20. <p>
21. <label>Email</label>
22. {/* You don't need to do anything with those inputs! You'll learn how to handle user input later */}
23. <input type="email" />
24. </p>
25.
26. <p>
27. <label>Password</label>
28. {/* You don't need to do anything with those inputs! You'll learn how to handle user input later */}
29. <input type="password" />
30. </p>
31.
32. <p id="actions">
33. <button onClick={handleLogin}>Login</button>
34. </p>
35. </div>
36.);
37. }
38.
39. export default App;

	　

	8
	지침
	Configuring Event Handlers
Your task is to edit the <button> in the App component such that the already defined handleCreateUser function is called with a value for name.
So you must not hard-code the value that should be assigned to user.name in the handleCreateUser function but instead pass it as a value for the name parameter when a click event on the <button> occurs.
You don't have to care about any value that might be entered into the <input> field - it's just there for decoration purposes.
	　

	　
	학습목표
	Build and use an event handler that needs an input value that's not automatically provided by React.
	　

	　
	힌트
	· By default, an event object will be created & passed into the event handling function (by React) => You must find a way to "work around" this behavior
· Maybe one function isn't enough?

	　

	　
	해답설명
	In my solution, I wrapped the handleCreateUser execution with an anonymous function.
1. <button onClick={() => handleCreateUser('Max')}>Create User</button>
It's therefore now this wrapping function that will be executed when the click event occurs. The code in the function body will therefore also only execute when that happens.
Hence, you can safely call handleCreateUser('Max') inside of that "wrapping function" without executing it too early.
	　

	9
	지침
	Working with State
You're working on a part of an online shop where a discounted price should be displayed on the screen once the user clicked a button.
Your task is to add an event listener to listen for clicks on the button that's already included in the App component.
Upon a button click, the price should change from $100 to $75.
Add a state value to the existing App component function and make sure the state value is both updated upon button clicks and output as part of the JSX code.

Important: In this Udemy environment, you CAN'T import & use useState like this:
1. import { useState } from 'react';
2. ...
3. useState();
Instead, import & use it like this (in your component):
1. import React from 'react';
2. ...
3. React.useState();
	　

	　
	학습목표
	Update the price of a product dynamically with help of React state.

	　

	　
	힌트
	· Register a click listener by adding a special prop to the <button> element (on...)
· Pass a pointer at the to-be-executed function to the event listener prop added to the <button>
· Use the useState() Hook to register a state value
· Keep in mind that the useState() Hook returns an array with multiple elements
· Output the state value via curly braces in your JSX code
· Update the state by using the state updating function provided by useState()
	　

	　
	해답설명
	In order to react to <button> clicks, the onClick prop should be added to the <button> element:
1. export default function App() {
2. return (
3. <div>
4. <p data-testid="price">$100</p>
5. <button onClick={}>Apply Discount</button>
6. </div>
7.);
8. }

Create a handleClick function (the name is up to you, though) and pass it to the onClick prop as a value:
1. export default function App() {
2. function handleClick() {
3. // executed upon <button> clicks!
4. }
5.
6. return (
7. <div>
8. <p data-testid="price">$100</p>
9. <button onClick={handleClick}>Apply Discount</button>
10. </div>
11.);
12. }

In order to change values & re-render the UI upon such changes, you must use "state" - a core React concept. In functional components, state can be registered via the useState() Hook. This Hook returns an array with exactly (!) two elements:
1. The current state value
2. A function that should be called to update the state value
Update the App component function like this to register + output a new price state value (the name of the state variable is up to you):
1. import React from 'react';
2.
3. export default function App() {
4. const [price, setPrice] = React.useState(100); // 100 is the default price state
5.
6. function handleClick() {
7. // executed upon <button> clicks!
8. }
9.
10. return (
11. <div>
12. <p data-testid="price">${price}</p>
13. <button onClick={handleClick}>Apply Discount</button>
14. </div>
15.);
16. }
Please note that the default state value for price is set to 100.

As a last step, call the state updating function inside of handleClick() and set the price to 75 when the button is clicked:
1. import React from 'react';
2.
3. export default function App() {
4. const [price, setPrice] = React.useState(100);
5.
6. function handleClick() {
7. setPrice(75);
8. }
9.
10. return (
11. <div>
12. <p data-testid="price">${price}</p>
13. <button onClick={handleClick}>Apply Discount</button>
14. </div>
15.);
16. }

	　

	10
	지침
	Conditional Content
You're working on a part of a web app that's responsible for showing a warning when a user is about to perform a dangerous action.
Therefore, your task is to conditionally show a warning box once a user has clicked a specific button. Inside that warning dialog, another button allows users to dismiss the warning (i.e., remove the warning box from the screen).
The finished app should display this UI, if the <button> has not been clicked yet:
[image:]
And this UI, once the button was clicked:
[image:]

Once the "Proceed" button was clicked, the warning box should be removed again:
[image:]
For this task, you must react to clicks on both <button> elements that are part of the starting code. The second button, outside of the <div> with the id="alert", should show the <div id="alert"> (and all its content). The button inside that <div> should then hide it again (i.e., remove it from the DOM).
It's up to you whether you want to use a ternary expression or store the conditionally shown JSX code in a variable.
Important: In this Udemy code editor you may get an error if you use useState() - use React.useState() instead!
	　

	　
	학습목표
	　 Show (and hide) content dynamically.
	　

	　
	힌트
	· You will need to work with some "should the warning be shown?" state (via React.useState()) for this exercise
· You could manage an isDeleting state value that's either true (in which case the warning box is shown) or false (in which case it's not shown)
· This state must be updated (and set to the appropriate value) whenever the two <button>s are clicked
· Based on the isDeleting state (or however you named it) you should include or exclude the <div id="alert">...</div> JSX code (e.g., via a variable or ternary expression)
	　

	　
	해답설명
	For this task, you need some state that controls whether the warning box is visible or not. Hence, the first step is to register such an isDeleting state that's either true (the box will be shown) or false (it will not be shown). Of course, you could use any other state name of your choice:
1. const [isDeleting, setIsDeleting] = React.useState(false);

This state should be set to true (to later show the warning dialog) whenever the "Delete" <button> is clicked. To achieve this, the onClick prop is added and set to a function that updates the isDeleting state accordingly:
1. import React from 'react';
2.
3. // don't change the Component name "App"
4. export default function App() {
5. const [isDeleting, setIsDeleting] = React.useState(false);
6.
7. function deleteHandler() {
8. setIsDeleting(true);
9. }
10.
11. return (
12. <div>
13. <div data-testid="alert" id="alert">
14. <h2>Are you sure?</h2>
15. <p>These changes can't be reverted!</p>
16. <button>Proceed</button>
17. </div>
18. <button onClick={deleteHandler}>Delete</button>
19. </div>
20.);
21. }

The "Proceed" <button> should do the opposite:
1. import React from 'react';
2.
3. // don't change the Component name "App"
4. export default function App() {
5. const [isDeleting, setIsDeleting] = React.useState(false);
6.
7. function deleteHandler() {
8. setIsDeleting(true);
9. }
10.
11. function proceedHandler() {
12. setIsDeleting(false);
13. }
14.
15. return (
16. <div>
17. <div data-testid="alert" id="alert">
18. <h2>Are you sure?</h2>
19. <p>These changes can't be reverted!</p>
20. <button onClick={proceedHandler}>Proceed</button>
21. </div>
22. <button onClick={deleteHandler}>Delete</button>
23. </div>
24.);
25. }

Now, you're ready to show the <div id="alert">...</div> conditionally, based on the value of isDeleting. For example, via a ternary expression:
1. return (
2. <div>
3. {isDeleting ? <div data-testid="alert" id="alert">
4. <h2>Are you sure?</h2>
5. <p>These changes can't be reverted!</p>
6. <button onClick={proceedHandler}>Proceed</button>
7. </div> : ''}
8. <button onClick={deleteHandler}>Delete</button>
9. </div>
10.);

Alternatively, you could use the && "trick":
1. return (
2. <div>
3. {isDeleting && <div data-testid="alert" id="alert">
4. <h2>Are you sure?</h2>
5. <p>These changes can't be reverted!</p>
6. <button onClick={proceedHandler}>Proceed</button>
7. </div>}
8. <button onClick={deleteHandler}>Delete</button>
9. </div>
10.);

Or use an extra variable to keep the logic out of your JSX code:
1. import React from 'react';
2.
3. // don't change the Component name "App"
4. export default function App() {
5. const [isDeleting, setIsDeleting] = React.useState(false);
6.
7. function deleteHandler() {
8. setIsDeleting(true);
9. }
10.
11. function proceedHandler() {
12. setIsDeleting(false);
13. }
14.
15. let warning;
16.
17. if (isDeleting) {
18. warning = (
19. <div data-testid="alert" id="alert">
20. <h2>Are you sure?</h2>
21. <p>These changes can't be reverted!</p>
22. <button onClick={proceedHandler}>Proceed</button>
23. </div>
24.);
25. }
26.
27. return (
28. <div>
29. {warning}
30. <button onClick={deleteHandler}>Delete</button>
31. </div>
32.);
33. }

	　

	11
	지침
	Dynamic Styling
Your task is to dynamically apply a CSS class (active) to the <p>Style me</p> element in the provided React app.
The class should be applied when the <button> is clicked for the first time.
Here's how the finished app should look like BEFORE the button was clicked:
[image:]
Here's how it should look like AFTER the button was clicked:
[image:]

Important: Use React.useState() instead of just useState() as the latter can cause problems in this Udemy code environment.
	　

	　
	학습목표
	Apply CSS styles dynamically to HTML elements.
	　

	　
	힌트
	· Keep in mind that, in JSX, you CAN'T use class as a prop - maybe something with a similar name should be used?
· You will need some state that's changed upon button clicks to update the CSS class
	　

	　
	해답설명
	For this task, you need some state that changes whenever the button is clicked - this state can then be used to apply the active CSS class dynamically.
Therefore, as a first step, add some state like this (to the App component function):
1. const [highlighted, setHighlighted] = React.useState(false);

This highlighted state should be changed whenever the <button> is clicked - hence the onClick prop and a fitting function (e.g., named handleClick) is required:
1. export default function App() {
2. const [highlighted, setHighlighted] = React.useState(false);
3.
4. function handleClick() {
5. setHighlighted(isHighlighted => !isHighlighted);
6. }
7.
8. return (
9. <div>
10. <p>Style me!</p>
11. <button onClick={handleClick}>Toggle style</button>
12. </div>
13.);
14. }
Important: Here, the setHighlighted() state updating function uses a function to set the new state - this is done to follow the common best practice of using such a function if the new state is based on the previous state. Here, the new state is the opposite of the old state (!isHighlighted sets true to false and vice versa).

Finally, it's time to apply the CSS class active on the <p> element dynamically:
1. import React from 'react';
2.
3. // don't change the Component name "App"
4. export default function App() {
5. const [highlighted, setHighlighted] = React.useState(false);
6.
7. function handleClick() {
8. setHighlighted(isHighlighted => !isHighlighted);
9. }
10.
11. return (
12. <div>
13. <p className={highlighted ? 'active' : undefined}>Style me!</p>
14. <button onClick={handleClick}>Toggle style</button>
15. </div>
16.);
17. }

	　

	12
	지침
	Dynamic List Content
You're working on a "Todo List" web app and your task is to output a list of dummy todo items dynamically. For this task, a Todo component has been prepared for you, though you must still add some code to it to receive and output the todo text.
To be more precise: In the App component, you should transform the DUMMY_TODOS array that's provided to you (which must not be changed!) to a list of JSX elements (<Todo> elements to be precise). Every Todo component item must receive and output the todo text via a prop called text.
The final UI should look like this:
[image:]
	　

	　
	학습목표
	Output a static list of todo items in a React component.
	　

	　
	힌트
	· Arrays can (and should) be transformed into JSX elements via the built-in map() method
· Keep in mind that someArray.map(...) must be wrapped with curly braces if used in JSX code
· map() takes a function that automatically receives the individual array item as an argument and returns the new value (to which the item should be transformed)
· To pass the todo text (which is different for every todo item) to the Todo component, you should use a text prop (props.text inside the Todo component, <Todo text="..."> inside the App component)

	　

	　
	해답설명
	As a first step, you should make sure that the Todo component is able to receive and output a text prop:
1. import React from 'react';
2.
3. export default function Todo(props) {
4. return {props.text};
5. }

With that out of the way, you can re-use this Todo component for different todo items.
Therefore, as a next step, you should dynamically map the DUMMY_TODOS array to an array full of <Todo /> JSX elements (which then can be output as part of the App component's JSX code). This is achieved via the built-in map() method (called on DUMMY_TODOS):
1. import React from 'react';
2.
3. import Todo from './Todo';
4. import './styles.css';
5.
6. export const DUMMY_TODOS = [
7. 'Learn React',
8. 'Practice React',
9. 'Profit!'
10.];
11.
12. // don't change the Component name "App"
13. export default function App() {
14. return (
15.
16. {DUMMY_TODOS.map(todo => <Todo text={todo} />)}
17.
18.);
19. }
In this code, you see that a (anonymous) function is passed to the map() method. This function is automatically executed by JavaScript - once for every item in DUMMY_TODOS. It automatically receives the item, for which it's currently executed, as an argument and must return the new value to which the item is transformed.
In this case, the old item values (which are plain strings like "Learn React") are transformed to <Todo /> JSX elements. The text property is set on <Todo /> to pass the todo item text to the Todo component.

	　

	13
	지침
	Using Fragments
Your task is to edit the existing Summary component such that it outputs the following content:
1. <h1>Summary</h1>
2. <p>{text}</p>
Inside the Summary component, this content must not be wrapped by any other HTML element!
For example, this code would be wrong:
1. <div>
2. <h1>Summary</h1>
3. <p>{text}</p>
4. </div>
	　

	　
	학습목표
	Build a component that outputs multiple sibling elements without any wrapping parent element.

	　

	　
	힌트
	· In places where JSX values can be used, you must have only one "JSX element" (which then may contain multiple nested elements)
· Keep in mind that React has a built-in element that can be used to avoid the usage of extra (unnecessary) wrapping HTML elements
	　

	　
	해답설명
	You can use the built-in fragment component to wrap the content of the Summary component.
Like this:
1. import React from 'react';
2. function Summary({ text }) {
3. return (
4. <React.Fragment>
5. <h1>Summary</h1>
6. <p>{text}</p>
7. </React.Fragment>
8.);
9. }
Alternatively, in most projects, you can even use a much shorter syntax:
1. function Summary({ text }) {
2. return (
3. <>
4. <h1>Summary</h1>
5. <p>{text}</p>
6. </>
7.);
8. }
Both versions will achieve the same result: The <h1> and <p> elements will be output without any unnecessary wrapping component.

	　

	14
	지침
	Forwarding Props
Your task is to work on the Input component such that it either returns a <textarea> element or an <input> element, depending on whether a richText prop set on Input is true or false.
I.e., if used like this:
1. <Input richText />
the Input component should render a <textarea>. Otherwise, it should render an <input>.
In addition, the Input component should forward all other props directly to the returned <textarea> or <input> elements.
I.e., it should be usable like this:
1. <Input type="text" placeholder="Your name" />
(as seen in the existing App.js file)
The final UI should look like this:
[image:]
	　

	　
	학습목표
	Build a reusable, custom Input component that either renders a <textarea> or an <input> and "forwards" all props to those elements.
	　

	　
	힌트
	· Remember modern JavaScript features / syntaxes that allow you to collect or distribute values ...
· When it comes to conditionally returning different elements (<textarea> vs <input>) don't try to come up with too complex solutions!

	　

	　
	해답설명
	In the example solution, the custom Input component conditionally returns either a <textarea> or an <input> based on the richText prop value by destructuring that prop and then using it in an if statement:

1. export default function Input({ richText }) {
2. if (richText) {
3. return <textarea />;
4. }
5.
6. return <input />;
7. }

As a second step, the Input component is then adjusted to collect all other props that may be set on the component via the special "rest property" syntax:
1. export default function Input({ richText, ...props }) {
2. if (richText) {
3. return <textarea />;
4. }
5.
6. return <input />;
7. }
The props object that's created by that syntax is then, as a last step, spread onto the returned elements:
1. export default function Input({ richText, ...props }) {
2. if (richText) {
3. return <textarea {...props} />;
4. }
5.
6. return <input {...props} />;
7. }
	　

	15
	지침
	Creating Flexible Components
Your task is to build a highly re-usable, custom Button component that can be used in all the following ways (also see the code in the App.js file):
"Filled" mode (default):
1. <Button>Default</Button>
or
1. <Button mode="filled">Filled</Button>
should yield buttons that looks like this:
[image:]

"Outline" mode:
1. <Button mode="outline">Outline</Button>
should yield a button that looks like this:
[image:]
"Text-only" mode:
1. <Button mode="text">Text</Button>
should yield a button that looks like this:
[image:]
With Icon:
1. <Button Icon={HomeIcon}>Home</Button>
or
1. <Button Icon={PlusIcon} mode="text">
2. Add
3. </Button>
should yield buttons that look like this:
[image:]
Hint: To make sure the icon becomes visible (if passed correctly to the component & used in there), wrap the icon component in the button with a that has the class "button-icon" on it.
You find all the styles (CSS classes) that are required to build a button that supports these different "modes" in the provided index.css file!
All buttons need a button CSS class - and then, depending on their mode, additional classes.
In addition, the custom Button component must accept all standard props that could be set on the built-in <button>. These props should be forwarded to the default <button> element that will be used in the custom Button component.
Your task therefore is to work on the Button component provided in the Button.js file. Don't add multiple custom components, instead work on that one provided component and make sure that it supports all these different modes & features. Also make sure, that if no mode is set, the "filled" mode is assumed as a default.
	　

	　
	학습목표
	Build a highly flexible & dynamic custom Button component that supports different styles and modes.
	　

	　
	힌트
	· You don't need to work on any other file than Button.js!
· How about supporting different "modes" via some prop that's accepted by the Button?
· Add the styling for the different modes with help of CSS classes
· All buttons need a button CSS class!
· Keep in mind that you can build a list of CSS classes that should be assigned to an element dynamically (e..g, via template literals or string concatenation)
· Also keep in mind that you can concatenate strings conditionally (e.g., by adding string values to an existing string from inside an if statement)
· Don't forget that you can combine explicitly extracted props ({ someProp }), built-in props like children and "rest property" props (...props) in the same component
· To support both buttons with and without icons, you'll probably need to output some content (in the Button component) conditionally
· Why might the Icon prop (in the App.js file, where the custom <Button> is used) be named Icon and not icon? Maybe it's important?
	　

	　
	해답설명
	　 The complete, finished Button component code can be found at the end of this text.
In the solution, as a first step, a mode prop is extracted from the incoming props object in the Button component. This mode prop is then used to dynamically construct a string that contains all to-be-assigned CSS classes.
Since the task required a default "button mode" of "filled", the mode prop is assigned a default value of 'filled'. Therefore, Button can be used without the mode prop and still get that "filled look".
In addition, the special, built-in children prop is extracted to output the content passed between the <Button> tags:
1. export default function Button({ children, mode = 'filled'}) {
2. let cssClasses = `button ${mode}-button`;
3.
4. return <button className={cssClasses}>{children}</button>;
5. }
As a next step, to support setting all the default <button> props, all remaining props are collected in a props object via JavaScript's "rest property" syntax.
These props are then spread onto the built-in <button> element:
1. export default function Button({ children, mode = 'filled', ...props}) {
2. let cssClasses = `button ${mode}-button`;
3.
4. return <button className={cssClasses} {...props}>{children}</button>;
5. }
Since those props could also include the className prop, that prop's value is merged into the cssClasses string:
1. export default function Button({ children, mode = 'filled', ...props}) {
2. let cssClasses = `button ${mode}-button`;
3.
4. if (props.className) {
5. cssClasses += ' ' + props.className;
6. }
7.
8. return <button className={cssClasses} {...props}>{children}</button>;
9. }
Of course, the custom Button should also support icons. Therefore, an Icon prop is extracted from the incoming props. It's called Icon (with an uppercase "I") and not icon (lowercase "i") because this prop should hold a component identifier (i.e., a pointer at a component function) as a value.
Keep in mind, that the custom Button is, for example, used like this:
1. <Button Icon={PlusIcon}>Add</Button>
The goal therefore is to use this Icon prop value as a component inside the Button component. In addition, if the Icon prop is set, the CSS classes are again extended to add the icon-button class:
1. export default function Button({ children, mode = 'filled', Icon, ...props}) {
2. let cssClasses = `button ${mode}-button`;
3.
4. if (Icon) {
5. cssClasses += ' icon-button';
6. }
7.
8. if (props.className) {
9. cssClasses += ' ' + props.className;
10. }
11.
12. return (
13. <button className={cssClasses} {...props}>
14. {Icon && (
15.
16. <Icon />
17.
18.)}
19. {children}
20. </button>
21.);
22. }
In this, final, code snippet, the Icon is output as a separate component (<Icon />), wrapped in a , if the Icon prop holds a value.
	　

	16
	지침
	Two-Way-Binding
Your task is to collect the values entered into the two input controls (<textarea> and <input>) via two-way binding.
In addition, you should pass the collected values via the appropriate props to the already existing Review component.
Important: In this Udemy workspace, you must use React.useState() instead of just useState()!
The final app should allow users to enter values and then see those entered values in the Review component which is output below the input components. It should look like this:
[image:]
The "Save" button is just there for decoration purposes - you don't need to do anything with that!
	　

	　
	학습목표
	Use two-way-binding to collect user input and output the entered text in a "preview area" of the example web app.
	　

	　
	힌트
	· Two-way-binding consists of two key elements:
· You must listen to changes to the input (and store the new value somewhere)
· You must output the stored value in the input
· When updated, the stored input values should cause the App component to be re-evaluated by React
· The stored values should also be passed (as props) to the Review component so that they are displayed by that component (take a look at the Review component code in Review.js to see which props are expected)
· In this Udemy workspace, you must use React.useState() (i.e., just import React from 'react') and NOT just useState() (i.e., import { useState } from 'react' also won't work)
	　

	　
	해답설명
	You find the finished solution code at the end of this text.
In the provided solution, the first step is to listen to value changes on the <textarea> and <input> elements.
Therefore, two event handling functions are added to the App component: handleChangeName and handleChangeFeedback.
These functions are then "connected" to the respective input controls via the built-in onChange prop:
1. function App() {
2.
3. function handleChangeName(event) {
4.
5. }
6.
7. function handleChangeFeedback(event) {
8.
9. }
10.
11. return (
12. <>
13. <section id="feedback">
14. <h2>Please share some feedback</h2>
15. <p>
16. <label>Your Feedback</label>
17. <textarea onChange={handleChangeFeedback} />
18. </p>
19. <p>
20. <label>Your Name</label>
21. <input type="text" onChange={handleChangeName} />
22. </p>
23. </section>
24. <section id="draft">
25. <h2>Your feedback</h2>
26. <Review />
27. <p>
28. <button>Save</button>
29. </p>
30. </section>
31. </>
32.);
33. }
To store the entered values and update the App component function whenever those values change, two state slices are added to the App component. Alternatively, you could also go for a single, combined state object.
Those state values are then set to the entered text from inside the event handling functions:
1. function App() {
2. const [studentName, setStudentName] = useState('');
3. const [feedback, setFeedback] = useState('');
4.
5. function handleChangeName(event) {
6. setStudentName(event.target.value);
7. }
8.
9. function handleChangeFeedback(event) {
10. setFeedback(event.target.value);
11. }
12.
13. return ...
14. }
Keep in mind that the event object is generated & provided automatically by React. event.target refers to the input control, event.target.value therefore contains the value provided by the user.
To fully implement two-way-binding, those stored values must know be "fed back" into the input controls by setting their value props to the respective state values:
1. function App() {
2. const [studentName, setStudentName] = useState('');
3. const [feedback, setFeedback] = useState('');
4.
5. function handleChangeName(event) {
6. setStudentName(event.target.value);
7. }
8.
9. function handleChangeFeedback(event) {
10. setFeedback(event.target.value);
11. }
12.
13. return (
14. <>
15. <section id="feedback">
16. <h2>Please share some feedback</h2>
17. <p>
18. <label>Your Feedback</label>
19. <textarea onChange={handleChangeFeedback} value={feedback} />
20. </p>
21. <p>
22. <label>Your Name</label>
23. <input type="text" onChange={handleChangeName} value={studentName} />
24. </p>
25. </section>
26. ...
27. </>
28.);
29. }
To complete the task, those state values are then also passed to the Review component by setting its feedback and student props:
1. import Review from './Review';
2.
3. function App() {
4. const [studentName, setStudentName] = useState('');
5. const [feedback, setFeedback] = useState('');
6.
7. function handleChangeName(event) {
8. setStudentName(event.target.value);
9. }
10.
11. function handleChangeFeedback(event) {
12. setFeedback(event.target.value);
13. }
14.
15. return (
16. <>
17. <section id="feedback">
18. <h2>Please share some feedback</h2>
19. <p>
20. <label>Your Feedback</label>
21. <textarea onChange={handleChangeFeedback} value={feedback} />
22. </p>
23. <p>
24. <label>Your Name</label>
25. <input type="text" onChange={handleChangeName} value={studentName} />
26. </p>
27. </section>
28. <section id="draft">
29. <h2>Your feedback</h2>
30.
31. <Review feedback={feedback} student={studentName} />
32.
33. <p>
34. <button>Save</button>
35. </p>
36. </section>
37. </>
38.);
39. }

	　

	17
	지침
	Dynamic Styling with Inline Styles
Your task is to help out a colleague and style a h1 element dynamically (with inline styles) depending on which button was pressed.
If the "Yes" button is pressed, the h1 element should receive color: "green" as an inline style. If the "No" button is pressed, color: "red" should be applied.
Initially, when no button has been clicked yet, the color should be set to "white".
Important: You must use these specific colors ("green", "red", "white") - don't use any hex code or slight variations of these colors!
In addition, this Udemy exercise workspace does not support the direct usage of React Hooks - instead, import React from 'react' and then use Hooks like this: React.useState().
	　

	　
	학습목표
	Dynamically style a heading depending on which button is pressed.
	　

	　
	힌트
	· Apply the styles via inline styles - not via CSS classes
· Use color: "green" and color: "red" - no variations
· Keep in mind that React expects an object as a value for the style prop
· In order to set colors dynamically, you'll need to manage some value that changes over time (and which, when changed, updates the UI)

	　

	　
	해답설명
	In the solution (scroll down for the full code), a choice state is added to the App component - this state is needed in order to set different color values depending on which button was pressed.
The choice state is either null (the initial value), "yes" (if the "Yes" button was pressed) or "no" (for the "No" button).
Of course, that's just one way of solving this - you could come up with a different state that stores slightly different state values. In the end, you just need some state that allows you to dynamically assign inline styles to the <h1> element.
This state is then changed with help of event listener functions that are "connected" to the onClick props of the "Yes" and "No" buttons.
In the solution, anonymous functions are used but you could also create and bind separate named functions instead.
Last but not least, the style prop is set on the <h1> element. It receives an object as a value (as expected by React).
In that object, the color property is either set to "white" (if no button was clicked), "green" (if choice === "yes", i.e. , the "Yes" button was clicked) or "red" (if choice === "no", i.e., the "No" button was clicked).

1. import React from 'react';
2.
3. function App() {
4. const [choice, setChoice] = React.useState(null);
5.
6. let textColor = 'white';
7.
8. if (choice === 'yes') {
9. textColor = 'green';
10. } else if (choice === 'no') {
11. textColor = 'red';
12. }
13.
14. return (
15. <div id="app">
16. <h1 style={{ color: textColor }}>CSS is great!</h1>
17. <menu>
18.
19. <button onClick={() => setChoice('yes')}>Yes</button>
20.
21.
22. <button onClick={() => setChoice('no')}>No</button>
23.
24. </menu>
25. </div>
26.);
27. }
	　

	21
	지침
	　Exercise: Fix Errors
For this exercise, imagine that colleagues gave you code they wrote for a React app they're working on.
At the moment, this code is failing and it's your job to find and fix all errors that are hiding in the code.

	　

	　
	학습목표
	　.
	　

	　
	힌트
	· 　It's more than one error you'll have to find & fix
· Look for typos and consider core React (component) rules
You can open the JavaScript console in your browser developer tools to see any error messages that might be thrown. There, amongst a huge amount of warning messages (coming from Udemy, not related to your app), you should see this error message which helps with fixing at least one of the app's errors:

	　

	　
	해답설명
	The provided starting code has two errors in it:
1. <Div> should be <div>
2. onclick should be onClick
<Div> should be <div>
In React apps, your own, custom components must start with an uppercase character. But those built-in, default HTML element components (like <p>, <input>, <div> etc.) all start with a lowercase character.
That applies to both the opening and closing tag: It should be <div>...</div> instead of <Div>...</Div>.
onclick should be onClick
Event listeners are added to components via the onXYZ props (where XYZ defines the event name) - for "click" events, onClick should be used therefore.
The casing matters here!
onclick is not the same as onClick - and indeed onclick is wrong and won't work.
Hence, to fix this error, <button onclick={...}> must be changed to <button onClick={...}>.
　
	　

	22
	지침
	　Accessing DOM Elements with "refs"
Your given a code snippet that's part of a bigger app that deals with user image uploads.
Since the native, built-in <input type="file"> element is hard to style and doesn't fit the intended app style, it's hidden via display: none in the provided index.css file.
Therefore, to make the file picker work without being displayed, your task is to ensure that the click event on the <input type="file"> element is triggered whenever the <button>Pick Image</button> is clicked.
This can be achieved by calling the built-in click() method on the underlying input element.
You should use React's "ref" feature to get hold of the <input type="file"> element and execute that click() method on it whenever the <button> is clicked.
Important: In this Udemy exercise environment, React hooks must be used directly on the imported React object (import React from 'react'). For example, useState (which you don't need for this task) would then be called like this: React.useState().
	　

	　
	학습목표
	　 Access a hidden file picker element and open the file picker dialog when another button is pressed.

	　

	　
	힌트
	· 　 The click() method can be called on the native, built-in JS object that's provided by the browser, when you "get hold" of the <input type="file"> element in your JS code
· To "get hold" of that element, you should use React's "ref" feature
· Only call click() when the <button> was clicked
· Listen to <button> clicks by adding an event handler function as you learned it earlier in the course
	　

	　
	해답설명
	In the solution, a new "ref" is created by calling React's useRef Hook. This ref is then "connected" to the <input type="file"> element by setting the special ref prop on that JSX element:

1. import React from 'react';
2.
3. function App() {
4. const filePicker = React.useRef();
5.
6. return (
7. <div id="app">
8. <p>Please select an image</p>
9. <p>
10. <input
11. data-testid="file-picker"
12. type="file"
13. accept="image/*"
14. ref={filePicker}
15. />
16. <button>Pick Image</button>
17. </p>
18. </div>
19.);
20. }

This alone doesn't do much though - the file picker is not getting "triggered".
To change this, a handleStartPickImage event listener function is added to the App component and set as a value for the onClick prop of the <button> element.
Inside that function, the filePicker ref is then used to get access to the file picker element's underlying JS object. This is achieved by accessing the current property on the filePicker ref. This is necessary because refs always are objects with a current property (which then holds the actual value assigned to the ref).
By calling the built-in click() method on the underlying input object the file picker is then "triggered" without being visible:

1. import React from 'react';
2.
3. function App() {
4. const filePicker = React.useRef();
5.
6. function handleStartPickImage() {
7. filePicker.current.click();
8. }
9.
10. return (
11. <div id="app">
12. <p>Please select an image</p>
13. <p>
14. <input data-testid="file-picker" type="file" accept="image/*" ref={filePicker} />
15. <button onClick={handleStartPickImage}>Pick Image</button>
16. </p>
17. </div>
18.);
19. }

	　

	23
	지침
	Managing Other Values with Refs
Your working on a "Workout" app and your task is to start and stop timers when users click the "Start" and "Stop" buttons of a selected workout.
You're provided with some code that already displays some workout items, therefore, you don't need to work on the JSX code or manage any state.
Instead, your task is to set a timer if the "Start" button is clicked and clear (stop) that timer once the "Stop" button is clicked.
If a timer expires, the same code that should execute if it's stopped manually (by pressing the "Stop" button) should be executed.
The timer expiration time should be different for every workout - take a closer look at the Workout component to get access to that workout-specific time.
You also must make sure that different Workout component instances set and manage separate, independent timers (i.e., when starting timers for "Pushups" and "Squats", clicking "Stop" for "Squats" should not stop the "Pushups" timer etc).
When a timer expires, the same function that's triggered when the "Stop" button is pressed should be executed.
Important: In this Udemy exercise environment, React Hooks can't be imported directly. Instead, you have to import React from 'react' and then call Hooks on that React object (e.g., React.useState()).
	　

	　
	학습목표
	　 Work on a "Workout" app and manage timers with help of "refs".

	　

	　
	힌트
	·
· You can start a timer via the built-in setTimeout function (setTimeout(callbackFn, timeInMilliseconds))
· You can stop timers via the built-in clearTimeout function
· In order to stop timers from a different place than where they were started, you must store & use the timer "reference" returned by setTimeout
· Maybe you should use a ref for storing that timer reference?
	　

	　
	해답설명
	　 In the solution, a timer is started in the handleStartWorkout function in the Workout component function by calling setTimeout.
As a first argument for setTimeout, a pointer at the handleStopWorkout function is provided - since that's the function that should be executed whenever the workout is stopped or the timer is done. The second argument is set to the time prop value since that's the workout time in milliseconds (passed to Workout in the App component):

1. export default function Workout({ title, description, time, onComplete }) {
2. function handleStartWorkout() {
3. setTimeout(handleStopWorkout, time);
4. }
5.
6. function handleStopWorkout() {
7. onComplete();
8. }
9.
10. return (
11. <article className="workout">
12. <h3>{title}</h3>
13. <p>{description}</p>
14. <p>{time}</p>
15. <p>
16. <button onClick={handleStartWorkout}>Start</button>
17. <button onClick={handleStopWorkout}>Stop</button>
18. </p>
19. </article>
20.);
21. }

To stop the timer from inside handleStopWorkout, a timer reference (which is returned automatically by setTimeout) must be stored and used with clearTimeout (a built-in function that stops a given timer).
This timer reference should not be stored in a standard variable defined inside the component function since that variable would be overwritten every time the component function is re-executed (e.g., because the parent component is re-executed).
It should also not be stored in a variable defined outside of the component function since that variable would be shared across all Workout component instances (i.e., stopping a timer from inside the "Pushups" instance could then stop the timer for "Squats" instance etc).
Therefore, using a "ref" via React's useRef() Hook is the solution! Because "refs" are not re-created when the component function is executed again. And they're also not shared across component instances.
Hence, a new timer ref is created and used to store the timer reference returned by setTimeout.
Important: The timer reference is stored inside of timer.current since React "refs" always are objects with a current property which should hold the actual ref value.
This stored timer reference is then used inside of the handleStopWorkout function to stop the timer with help of the built-in clearTimeout function:

1. import React from 'react';
2.
3. export default function Workout({ title, description, time, onComplete }) {
4. const timer = React.useRef();
5.
6. function handleStartWorkout() {
7. timer.current = setTimeout(handleStopWorkout, time);
8. }
9.
10. function handleStopWorkout() {
11. clearTimeout(timer.current);
12. onComplete();
13. }
14.
15. return (
16. <article className="workout">
17. <h3>{title}</h3>
18. <p>{description}</p>
19. <p>{time}</p>
20. <p>
21. <button onClick={handleStartWorkout}>Start</button>
22. <button onClick={handleStopWorkout}>Stop</button>
23. </p>
24. </article>
25.);
26. }

	　

	24
	지침
	　 Forwarding Refs
Your task is to finish a custom Input component that was created by a colleague.
The Input component must be highly configurable and meet the following requirements:
· It must accept a label prop which is used to set the text for the <label> element (i.e., between the <label> tags)
· It must accept all other attributes that could be added to <input> elements and set those props on the <input> element
· It must accept the special ref prop and connect the received ref to the <input> element
This Input component can then be used in the App component. There, it's actually already being used and some props (the label and type props) are already set on the custom Input component.
But in addition, your task also is to read the entered name and email values inside of the handleSaveData function with help of React's "ref" feature.
To achieve this task, you must ensure that the custom Input component is able to receive the special ref prop and that this prop is then "connected" to the returned <input> element.
Of course you also must add fitting refs to the App component and use them in handleSaveData to retrieve the actual entered input data.
The read values must then be stored in the already-existing userData object.
Important: In this Udemy exercise workspace, any React Hooks must be accessed directly on the imported React object (import React from 'react') - for example: React.useState().
The same is true for other React functions you might need to solve this task!
	　

	　
	학습목표
	Finish a custom "Input" component by making it usable with "refs".
	　

	　
	힌트
	· To set the <label> text, you should get hold of the label prop (inside the Input component) and use it appropriately
· You can destructure incoming props and also collect remaining props into a combined props object (via JavaScript's special ...props syntax)
· You can "spread" object key-value pairs as prop key-value pairs onto a component via the special {...props} syntax
· Keep in mind that you can't accept and use the special ref prop like other props
· Instead you have to use a special function offered by React to "wrap" a component that should be able to accept that special ref prop
· In this Udemy exercise workspace, that special function, just like Hooks, can't be imported directly - instead, you have to import React from 'react' and call functions (like Hooks) on that React object (e.g., React.useState())
	　

	　
	해답설명
	In the solution, as a first step, a label prop is "pulled out" of the incoming props object in the Input component function. In addition, any other props are grouped into a props object via JavaScript's ...props syntax.
The label prop is then output as a text value between the <label> tags, the collected props are spread onto the <input> element:

1. export default function Input({ label, ...props }) {
2. return (
3. <p className="control">
4. <label>{label}</label>
5. <input {...props} />
6. </p>
7.);
8. }

To allow the App component to pass a ref value to the Input component, the Input component is wrapped with React's forwardRef function. This function is required since the special ref prop can not be accepted or destructured like those other props.
Therefore, the Input component function is wrapped with forwardRef and the returned object is then stored in a Input constant which is exported as a default.
Component functions wrapped with forwardRef then receive a second parameter (besides the props object which is the first parameter): a ref parameter that contains the value that might be set for the special ref prop.
This ref parameter can then be used like any other ref in React - it can, for example, be "connected" to JSX elements. Hence, to meet the task requirements, it is set as a value for the ref prop on the <input> element in this case.
Therefore, the Input component function file now contains this code:

1. import React from 'react';
2.
3. const Input = React.forwardRef(function Input({ label, ...props }, ref) {
4. return (
5. <p className="control">
6. <label>{label}</label>
7. <input ref={ref} {...props} />
8. </p>
9.);
10. });
11.
12. export default Input;

With the Input component enhanced and finished, the App component code should therefore now also be changed.
In order to read the entered name and email values inside the handleSaveData function, two refs are created with help of React's useRef() Hook.
These refs are then forwarded to the Input component by setting them as values on the Input component's special ref prop (which can now be set thanks to forwardRef).
Inside handleSaveData, those refs can then be used to access and read the entered values:

1. import React from 'react';
2.
3. import Input from './Input';
4.
5. export const userData = {
6. name: '',
7. email: '',
8. };
9.
10. export function App() {
11. const name = React.useRef();
12. const email = React.useRef();
13.
14. function handleSaveData() {
15. const enteredName = name.current.value;
16. const enteredEmail = email.current.value;
17.
18. userData.name = enteredName;
19. userData.email = enteredEmail;
20.
21. console.log(userData);
22. }
23.
24. return (
25. <div id="app">
26. <Input type="text" label="Your Name" ref={name} />
27. <Input type="email" label="Your E-Mail" ref={email} />
28. <p id="actions">
29. <button onClick={handleSaveData}>Save Data</button>
30. </p>
31. </div>
32.);
33. }

	　

	25
	지침
	Exposing Component APIs
Your working on a part of an application that contains a form which should be resettable from outside that form.
A colleague prepared a Form component that contains a couple of dummy inputs and a "Save" button that's not doing anything.
Your task is to expose a clear() function from inside that Form component so that other components that use the Form component can call that function to reset the form.
Because that exposed clear() function should call the form's built-in reset() method (the JS form object, which is the underlying object of the <form> element, has a reset() method that does exactly what its name implies).
So the Form component should be usable like this:

1. function SomeComponent() {
2. const form = React.useRef();
3.
4. function handleClear() {
5. form.current.clear();
6. }
7.
8. return <Form ref={form}/>
9. }

After adding this feature to the Form component you should tweak the App component to establish a "connection" to the Form component and call the newly exposed clear() method from inside the App component's handleRestart() function.
So you should add code similar to the above code snippet to the App component.
Important: In this Udemy exercise workspace, any React Hooks (and other React functions!) must be accessed directly on the imported React object (import React from 'react') - for example: React.useState().
	　

	　
	학습목표
	Finish a "Form" component that provides a "clear()" method that can be triggered from outside that component.
	　

	　
	힌트
	· For this task, you should not forward a ref from the App component directly to the <form> element inside the Form component!
· But you will need to forward a ref - it just shouldn't be connected to the <form> element
· Instead, use that ref to expose a clear() method
· Keep in mind that you can expose methods from a component function with help of a special React Hook
· That Hook will need to work with a ref that's forwarded to the Form component
· You will also need to create another ref (inside the Form component) to interact with the <form> element and trigger its reset() method (when the exposed clear() method is triggered)
· You can reset a form by calling the built-in reset() method on the underlying form object (which can be retrieved by connecting a ref to the <form> element)

	　

	　
	해답설명
	In the solution, as a first step, a ref is created inside the Form component. This ref is then "connected" to the <form> element and will be used for calling the form's reset() method whenever the (to-be-added) clear() method will be called from inside some other component:

1. import React from 'react';
2.
3. export default function Form(props, ref) {
4. const form = React.useRef();
5.
6. return (
7. <form ref={form}>
8. <p>
9. <label>Name</label>
10. <input type="text" />
11. </p>
12.
13. <p>
14. <label>Email</label>
15. <input type="email" />
16. </p>
17. <p id="actions">
18. <button>Save</button>
19. </p>
20. </form>
21.);
22. }

To expose a clear() method that can be called from inside the App component, React's useImperativeHandle Hook must be used. This Hook allows you (= the developer) to expose an API (a collection of methods) from a component to other components.
This useImperativeHandle Hook needs a (forwarded) ref (coming from the component that wants to access the exposed API) as a first input value.
As a second argument, it expects to get a function that must return an object that contains all methods that should be exposed.
Therefore, the Form component is also wrapped with forwardRef.
Inside the object returned in the second argument function of useImperativeHandle, a clear() method is added. Inside that method, the form ref is used to access the JavaScript form object (belonging to <form>) and call its reset() method.

1. import React from 'react';
2.
3. const Form = React.forwardRef(function Form(props, ref) {
4. const form = React.useRef();
5. React.useImperativeHandle(ref, () => {
6. return {
7. clear() {
8. form.current.reset();
9. },
10. };
11. });
12.
13. return (
14. <form ref={form}>
15. <p>
16. <label>Name</label>
17. <input type="text" />
18. </p>
19.
20. <p>
21. <label>Email</label>
22. <input type="email" />
23. </p>
24. <p id="actions">
25. <button>Save</button>
26. </p>
27. </form>
28.);
29. });
30.
31. export default Form;

Finally, the App component is edited to call that clear() method from inside handleRestart.
A new ref (form) is created and passed via the special ref prop to the custom Form component.
That form ref is then used to call the Form component's clear() method:

1. import React from 'react';
2.
3. import Form from './Form';
4.
5. export function App() {
6. const form = React.useRef();
7.
8. function handleRestart() {
9. form.current.clear();
10. }
11.
12. return (
13. <div id="app">
14. <button onClick={handleRestart}>Restart</button>
15. <Form ref={form} />
16. </div>
17.);
18. }
	　

	26
	지침
	Working with Portals
A colleague asked you to finish work on a Toast component they worked on.
That component should output a short info message upon certain page events - e.g., once a user successfully enrolled into a course.
To optimize the final DOM structure, the rendered content of the Toast component should be injected directly into the <body> element (which could be selected via document.querySelector('body')). It should NOT be rendered in the place where the <Toast /> component is used in the JSX code!
For this task, the edited Toast component should then be displayed conditionally once a user clicked the Enrol button in the App component.
After 3 seconds (set via setTimeout), the Toast component should be removed from the page again.
Important: In this Udemy exercise workspace, any React Hooks (and other React functions) must be accessed directly on the imported React object (import React from 'react') - for example: React.useState().
The same is true for any functions that are part of the react-dom library - you must instead import ReactDOM from 'react-dom' and then call any functions on that ReactDOM object (ReactDOM.someFunction()).
	　

	　
	학습목표
	Finish a "Toast" info message component by injecting it a pre-defined place in the page DOM.
	　

	　
	힌트
	·
· Show / hide the Toast component conditionally with help of state that's set from inside handleEnrol and the setTimeout callback
· You can "move" the rendered JSX code of a component to a different place in the DOM with help of a special function exposed by React's "DOM" library (react-dom)
· That special function needs the to-be-moved JSX code as a first argument and the DOM element into which it should be injected as a second argument
	　

	　
	해답설명
	In the solution, as a first step, the createPortal function exposed by react-dom is used to "move" the JSX code returned by the Toast component directly into the <body> element. That element is selected (and passed as a second argument to createPortal()) via the built-in document.querySelector('body') method.
The improved Toast component therefore looks like this:

1. import ReactDOM from 'react-dom';
2.
3. export default function Toast({ message }) {
4. return ReactDOM.createPortal(
5. <aside className="toast" data-testid="toast">
6. <p>{message}</p>
7. </aside>,
8. document.querySelector('body')
9.);
10. }

To show this Toast component conditionally, a new piece of state (toastVisible) is added to the App component.
There, it's set to true inside of handleEnrol and set to false inside the callback function that's passed to setTimeout.
toastVisible is then used to conditionally render the <Toast /> component:

1. import React from 'react';
2.
3. import Toast from './Toast';
4.
5. function App() {
6. const [toastVisible, setToastVisible] = React.useState(false);
7.
8. function handleEnrol() {
9. setToastVisible(true);
10.
11. setTimeout(() => {
12. setToastVisible(false);
13. }, 3000);
14. }
15.
16. return (
17. <div id="app">
18. {toastVisible && <Toast message="Enrolled successfully!" />}
19. <article>
20. <h2>React Course</h2>
21. <p>
22. A course that teaches you React from the ground up and in great depth!
23. </p>
24. <button onClick={handleEnrol}>Enrol</button>
25. </article>
26. </div>
27.);
28. }
29.
30. export default App;

	　

	27
	지침
	　 Creating & Using Context
Your task is to add a "theming" feature to a demo app you're given by a colleague. This "theming" feature should be implemented with help of React's Context API.
Your main goal is to ensure that the "Toggle Theme" button in the Header component triggers a (to-be-added) toggleTheme() function exposed through context.
The context value should be dynamic and managed inside the ThemeContextProvider.js file. The current theme mode should be managed as a value that's either 'light' or 'dark' and exposed via a theme property on the overall context object.
The context object should also expose the above-mentioned toggleTheme() method that changes the theme property's value ('light' <-> 'dark').
The Header component needs access to the context to call the toggleTheme() method, the Page component will need access to apply a the CSS class 'light' (for theme === 'light') or the class 'dark' (theme === 'dark') to the <div id="app">.
In the end, the app should look like this if the theme was not changed or switched multiple times (i.e., 'light' mode):
[image:]
And it should look like this, if theme was toggled to 'dark':
[image:]
Important: In this Udemy exercise workspace, any React Hooks (and other React functions!) must be accessed directly on the imported React object (import React from 'react') - for example: React.useState().

	　

	　
	학습목표
	Use React's Context feature to add "theming" (switch between "light" and "dark" theme) to a React app.
	　

	　
	힌트
	· 　 For this task, you should not use props, lifted-up-state or anything like that - instead, use React's Context API
· To use the Context API, you'll need to do three main things:
· Create a context
· Provide the context value (which includes the theme property and the toggleTheme() method)
· Consume the context
· Set the provided context theme value dynamically - i.e., via state
· Use a separate "Provider" component that wraps any children passed to it
· Wrap the Page component with the Provider component (inside the App) component

	　

	　
	해답설명
	　 In the solution, as a first step, a new context object is created in the ThemeContextProvider.js file.
This context object is created via React's createContext() function - it's also exported to make it available in other files. It receives an initial (dummy) value which is an object that exposes a theme property and an (empty) toggleTheme() method:

1. import React from 'react';
2.
3. export const ThemeContext = React.createContext({
4. theme: 'light',
5. toggleTheme: () => {},
6. });

To provide this context to other components, in the same file, a ThemeContextProvider component is created and exported as a default.
This ThemeContextProvider should be wrappable around other JSX code - therefore, the special, built-in children prop is "pulled out" of the incoming props and wrapped with <ThemeContext.Provider> (a component created by React, exposed through the ThemeContext object).

1. import React from 'react';
2.
3. export const ThemeContext = React.createContext({
4. theme: 'light',
5. toggleTheme: () => {},
6. });
7.
8. export default function ThemeContextProvider({ children }) {
9. return <ThemeContext.Provider>{children}</ThemeContext.Provider>;
10. }

This context should expose a dynamic (i.e., changeable) value.
Therefore, React's useState() Hook is used to manage the theme value. As an initial value, 'light' is chosen - this will ensure that the app starts in "light mode".
In addition, a toggleTheme() function is added to the ThemeContextProvider component. This function switches the theme from 'light' to 'dark' and vice versa.
Both the theme state and the toggleTheme() function are then grouped into a value object that's set as a value for the <ThemeContext.Provider> component:

1. import React from 'react';
2.
3. export const ThemeContext = React.createContext({
4. theme: 'light',
5. toggleTheme: () => {},
6. });
7.
8. export default function ThemeContextProvider({ children }) {
9. const [theme, setTheme] = React.useState('light');
10.
11. const toggleTheme = () => {
12. setTheme((prevTheme) => {
13. return prevTheme === 'light' ? 'dark' : 'light';
14. });
15. };
16.
17. return (
18. <ThemeContext.Provider value={{ theme, toggleTheme }}>
19. {children}
20. </ThemeContext.Provider>
21.);
22. }

To use and provide this context to all interested components, the <Page /> component in the App component is now wrapped with this custom ThemeContextProvider component:

1. import Page from './Page';
2. import ThemeContextProvider from './ThemeContextProvider';
3.
4. function App() {
5. return (
6. <ThemeContextProvider>
7. <Page />
8. </ThemeContextProvider>
9.);
10. }
11.
12. export default App;

Now, the context can be consumed and used by the Page component and descendant components of the Page component (i.e., the Header component in this case).
In the Header component, the ThemeContext is imported and "read" with help of React's useContext() Hook.
This allows us to then get access to the context's toggleTheme() function and set it as a value for the onClick prop of the <button>Toggle Theme</button>:

1. import React from 'react';
2.
3. import { ThemeContext } from './ThemeContextProvider';
4.
5. export default function Header() {
6. const themeCtx = React.useContext(ThemeContext);
7.
8. return (
9. <header>
10. <h1>Demo Website</h1>
11. <button onClick={themeCtx.toggleTheme}>Toggle Theme</button>
12. </header>
13.);
14. }

Finally, to adjust the look of the page, the Page component also uses useContext() to get access to the (dynamic) theme property.
Since the goal is to conditionally set a 'light' or 'dark' CSS class on the <div id="app"> (inside the Page component) and the theme property contains either 'light' or 'dark' as a value, it's the theme property value itself that can be set as a CSS class:

1. import React from 'react';
2.
3. import Header from './Header';
4. import { ThemeContext } from './ThemeContextProvider';
5.
6. export default function Page() {
7. const themeCtx = React.useContext(ThemeContext);
8.
9. return (
10. <div id="app" className={themeCtx.theme}>
11. <Header />
12.
13. <article>
14. <h2>React Course</h2>
15. <p>
16. A course that teaches you React from the ground up and in great depth!
17. </p>
18. </article>
19. </div>
20.);
21. }

	　

	28
	지침
	　 Using useReducer()
Your task is to build a basic counter app that uses React's useReducer() Hook for state management - not the useState() Hook!
To achieve this goal, you should enhance the already existing counterReducer function that can be found right next to the App component (don't remove the export keyword!).
In addition, inside the App component, the useReducer Hook should be used with that reducer function to manage the counter state.
The three <button> elements should be "connected" to the reducer-managed state (i.e., they should trigger state changes), the <p id="counter"> element should output the count value.
Important: The state managed with help of the reducer must be an object of the following shape:

1. {
2. count: 0; // of course, 0 is not static but changes as the different <button>s are clicked
3. }

When dispatching actions, you should make sure that every action is an object that has a type property (it must be named type - other names will make the automatic checks fail!) that contains either 'INCREMENT', 'DECREMENT' or 'RESET' as a value!
Important: In this Udemy exercise workspace, any React Hooks must be accessed directly on the imported React object (import React from 'react') - for example: React.useState().

	　

	　
	학습목표
	Use React's useReducer() Hook to implement a basic "Counter" app in a more fancy way!
	　

	　
	힌트
	· 　 Make sure counterReducer gets exported and also don't change its name (otherwise, the automatic checks fail)!
· Don't forget that the counterReducer function will need some input (parameters) to work correctly
· Dispatch action objects that have a type property (where type is 'INCREMENT', 'DECREEMNT' or 'RESET')
· Don't forget that useReducer(), like useState(), always returns an array with exactly two elements
· One element is for reading the current state, the other element is for changing it - though it'll work differently than it does when using useState()

	　

	　
	해답설명
	In the solution, as a first step, the existing counterReducer() function is edited to accept two parameters:
· A state value
· A dispatched action
The values for these parameters will be provided by React since it'll be React that calls this counterReducer() function in the end (it does that when you dispatch an action).
For this task, all dispatched actions should be objects that each have a type property (which is either 'INCREMENT', 'DECREMENT' or 'RESET') - therefore, three if checks are added to the reducer to handle these different cases.
In addition, in case some unknown action should be dispatched, the unchanged state is returned:

1. export function counterReducer(state, action) {
2. if (action.type === 'INCREMENT') {
3. // Todo...
4. } else if (action.type === 'DECREMENT') {
5. // Todo...
6. } else if (action.type === 'RESET') {
7. // Todo...
8. }
9.
10. return state;
11. }

In case the action.type is 'INCREMENT', the counter value should be increased by 1. For 'DECREMENT' it should be reduced by 1. And for 'RESET', it should be set back to 0.
As described in the task definition, the state should be an object that contains that counter value (a count property), therefore the counterReducer function is updated appropriately:

1. export function counterReducer(state, action) {
2. if (action.type === 'INCREMENT') {
3. return { count: state.count + 1 };
4. } else if (action.type === 'DECREMENT') {
5. return { count: state.count - 1 };
6. } else if (action.type === 'RESET') {
7. return { count: 0 };
8. }
9.
10. return state;
11. }

With the counterReducer finished, the useReducer() Hook is added to the App component function body.
This Hook receives two main arguments:
· The connected reducer function (that will be invoked whenever an action is dispatched)
· The initial state value
Therefore, the App component function looks like this:

1. export function counterReducer(state, action) {
2. /* ... */
3. } // code left out here for brevity - it's the same as above
4.
5. function App() {
6. React.useReducer(counterReducer, { count: 0 });
7.
8. return (
9. <div id="app">
10. <h1>The (Final?) Counter</h1>
11. <p id="actions">
12. <button>Increment</button>
13. <button>Decrement</button>
14. <button>Reset</button>
15. </p>
16. <p id="counter"></p>
17. </div>
18.);
19. }

useReducer() then returns an array with exactly two elements:
· The current state
· A "dispatch" function that can be called to dispatch a new action
Array destructuring can be used to store these elements in separate constants or variables.
The state value is then used to output the current counter value (via {counterState.count} since the state is an object with a count property).
The dispatch function is triggered, with different action objects (with different types), when the <button>s are clicked:

1. import React from 'react';
2.
3. export function counterReducer(state, action) {
4. if (action.type === 'INCREMENT') {
5. return { count: state.count + 1 };
6. } else if (action.type === 'DECREMENT') {
7. return { count: state.count - 1 };
8. } else if (action.type === 'RESET') {
9. return { count: 0 };
10. }
11.
12. return state;
13. }
14.
15. function App() {
16. const [counterState, dispatchCounterAction] = React.useReducer(
17. counterReducer,
18. { count: 0 }
19.);
20.
21. return (
22. <div id="app">
23. <h1>The (Final?) Counter</h1>
24. <p id="actions">
25. <button onClick={() => dispatchCounterAction({ type: 'INCREMENT' })}>
26. Increment
27. </button>
28. <button onClick={() => dispatchCounterAction({ type: 'DECREMENT' })}>
29. Decrement
30. </button>
31. <button onClick={() => dispatchCounterAction({ type: 'RESET' })}>
32. Reset
33. </button>
34. </p>
35. <p id="counter">{counterState.count}</p>
36. </div>
37.);
38. }
39.
40. export default App;
	　

image1.jpeg

image2.jpeg

image3.jpeg

image4.jpeg

image5.png

image6.jpeg

image7.png

image8.png

image9.jpeg

image10.jpeg

image11.jpeg

image12.jpeg

image13.jpeg

image14.jpeg

image15.jpeg

image16.jpeg

image17.jpeg

