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	39
	 A Closer Look: Components & File Extensions
At this point, you've built a first custom component and you, of course, also worked with the App component.
For the moment, both components are stored in the App.jsx file (this will change later though).
.jsx is a file extension that's not supported by the browser! It's working because you're working in a React project that supports this special extension. Because this extension "tells" the underlying build process (which is running behind the scenes when the development server is running) that a file contains JSX code (which is also not supported by browsers).
It's important to understand that it's really just that build process that cares about this extension.
And therefore, you'll also find React projects that don't use .jsx but instead just .js as a file extension. And in those .js files, you'll also find JSX code. Because it simply depends on the underlying build process which extension is expected when using this JSX syntax in a file.
Since it doesn't work in the browser either way, there is no hard rule regarding this. Instead, you'll find projects that require .jsx (like the project setup we use in this course) and you'll find projects that also support .js (with JSX code inside).
I'm emphasizing this here so that you're not confused if you encounter React projects that don't use .jsx files.
In addition, you'll also find projects that require the file extension as part of file imports (e.g., import App from './App.jsx') and you'll find other projects that don't require this (i.e., there, you could just use import App from './App').
This, again, has nothing to do with the browser or "standard JavaScript" - instead it simply depends on the requirements of the code build process that's part of the project setup you chose.

	
	

	45
	 More Prop Syntaxes
Beyond the various ways of setting and extracting props about which you learned in the previous lecture, there are even more ways of dealing with props.
But no worries, you'll see all these different features & syntaxes in action throughout the course!
Passing a Single Prop Object
If you got data that's already organized as a JavaScript object, you can pass that object as a single prop value instead of splitting it across multiple props.
I.e., instead of
1. <CoreConcept
2.   title={CORE_CONCEPTS[0].title}
3.   description={CORE_CONCEPTS[0].description}  
4.   image={CORE_CONCEPTS[0].image} />
or
1. <CoreConcept
2.   {...CORE_CONCEPTS[0]} />
you could also pass a single concept (or any name of your choice) prop to the CoreConcept component:
1. <CoreConcept
2.   concept={CORE_CONCEPTS[0]} />
In the CoreConcept component, you would then get that one single prop:
1. export default function CoreConcept({ concept }) {
2.   // Use concept.title, concept.description etc.
3.   // Or destructure the concept object: const { title, description, image } = concept;
4. }
It is entirely up to you which syntax & approach you prefer.
Grouping Received Props Into a Single Object
You can also pass multiple props to a component and then, in the component function, group them into a single object via JavaScript's "Rest Property" syntax.
I.e., if a component is used like this:
1. <CoreConcept
2.   title={CORE_CONCEPTS[0].title}
3.   description={CORE_CONCEPTS[0].description}  
4.   image={CORE_CONCEPTS[0].image} />
You could group the received props into a single object like this:
1. export default function CoreConcept({ ...concept }) { 
2.   // ...concept groups multiple values into a single object
3.   // Use concept.title, concept.description etc.
4.   // Or destructure the concept object: const { title, description, image } = concept;
5. }
If that syntax is a bit confusing - worry not! You'll also see concrete examples for this syntax (and for why you might want to use it in certain situations) throughout the course!
Default Prop Values
Sometimes, you'll build components that may receive an optional prop. For example, a custom Button component may receive a type prop.
So the Button component should be usable either with a type being set:
1. <Button type="submit" caption="My Button" />
Or without it:
1. <Button caption="My Button" />
To make this component work, you might want to set a default value for the type prop - in case it's not passed.
This can easily be achieved since JavaScript supports default values when using object destructuring:
1. export default function Button({ caption, type = "submit" }) { 
2.   // caption has no default value, type has a default value of "submit"
3. }

	
	

	71
	 Closer Look: public/ vs assets/ for Image Storage
The public/ Folder
As shown in the previous lecture you can store images in the public/ folder and then directly reference them from inside your index.html or index.css files.
The reason for that is that images (or, in general: files) stored in public/ are made publicly available by the underlying project development server & build process. Just like index.html, those files can directly be visited from inside the browser and can therefore also be requested by other files.
If you try loading localhost:5173/some-image.jpg, you'll be able to see that image (if it exists in the public/ folder, of course).
The src/assets/ Folder
You can also store images in the src/assets/ folder (or, actually, anywhere in the src folder).
So what's the difference compared to public/?
Any files (of any format) stored in src (or subfolders like src/assets/) are not made available to the public. They can't be accessed by website visitors. If you try loading localhost:5173/src/assets/some-image.jpg, you'll get an error.
Instead, files stored in src/ (and subfolders) can be used in your code files. Images imported into code files are then picked up by the underlying build process, potentially optimized, and kind of "injected" into the public/ folder right before serving the website. Links to those images are automatically generated and used in the places where you referenced the imported images.
Which Folder Should You Use?
You should use the public/ folder for any images that should not be handled by the build process and that should be generally available. Good candidates are images used directly in the index.html file or favicons.
On the other hand, images that are used inside of components should typically be stored in the src/ folder (e.g., in src/assets/).

	
	

	123
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	141
	 Repetition: Fragments
In earlier versions of this course, this section also introduced the concept of "React Fragments" (<Fragment> ... </Fragment> or <> ... </>).
The newer version of the course already introduced this concept in the "React Essentials" sections.
But since it's a key concept that will be used throughout the entire course (and, in general, in pretty much all React projects), it's time for a brief refresher!
When writing JSX code, there's one important rule: A JSX value must have only one root element.
For example, the following code would be invalid and cause an error:
1. return (
2.   <h2>Welcome!</h2>
3.   <p>React is awesome!</p>
4. );
So would this code:
1. const content = (
2.   <h2>Welcome!</h2>
3.   <p>React is awesome!</p>
4. );
In both snippets, the JSX value has two sibling root elements - and that's not allowed!
One solution would be to wrap these elements into a <div> - which then acts as a single root JSX element:
1. return (
2.   <div>
3.     <h2>Welcome!</h2>
4.     <p>React is awesome!</p>
5.   </div>
6. );
This would work and therefore is an acceptable solution.
But it has a downside: You now have that extra <div> in your DOM - even though you don't really need it (besides for getting rid of the this error).
That's why React offers a better solution: A special JSX element called "React Fragment".
It can be used as a wrapper to ensure that there's only one root JSX element whilst at the same time not rendering any DOM element.
You can use it like this:
1. import { Fragment } from 'react';
2.  
3. // ... other code ...
4.  
5. return (
6.   <Fragment>
7.     <h2>Welcome!</h2>
8.     <p>React is awesome!</p>
9.   </Fragment>
10. );
Most React projects (e.g., projects created with Vite or create-react-app) offer an even shorter form:
1. // no import needed
2.  
3. return (
4.   <>
5.     <h2>Welcome!</h2>
6.     <p>React is awesome!</p>
7.   </>
8. );

	
	

	154
	 Closing the Modal via the ESC (Escape) Key
The <dialog> element allows website visitors to close the opened dialog by pressing the ESC (Escape) key on their keyboard.
Currently, this will not trigger the onReset function though (unlike closing the dialog with a button click).
To make sure that onReset gets triggered when the dialog is closed via the escape key, you should add the built-in onClose prop to the <dialog> element and bind it to the onReset prop value.
Like this:
1. <dialog ref={dialog} className="result-modal" onClose={onReset}
2.    ...
3. </dialog>
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	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	204
	 Fixing a Small Bug
The <dialog> element can also be closed by pressing the ESC key on the keyboard. In that case, the dialog will disappear but the state passed to the open prop (i.e., the modalIsOpen state) will not be set to false.
Therefore, the modal can't be opened again (because modalIsOpen still is true - the UI basically now is not in sync with the state anymore).
To fix this issue, we must listen to the modal being closed by adding the built-in onClose prop to the <dialog>. The event is then "forwarded" to the App component by accepting a custom onClose prop on the Modal component.
The Modal component therefore should look like this:
1. import { useRef, useEffect } from 'react';
2. import { createPortal } from 'react-dom';
3.  
4. function Modal({ open, children, onClose }) {
5.   const dialog = useRef();
6.  
7.   useEffect(() => {
8.     if (open) {
9.       dialog.current.showModal();
10.     } else {
11.       dialog.current.close();
12.     }
13.   }, [open]);
14.  
15.   return createPortal(
16.     <dialog className="modal" ref={dialog} onClose={onClose}>
17.       {children}
18.     </dialog>,
19.     document.getElementById('modal')
20.   );
21. }
22.  
23. export default Modal;
In the App component, we can now set the handleStopRemovePlace function as a value for the onClose prop on the <Modal> component:
1. <Modal open={modalIsOpen} onClose={handleStopRemovePlace}>
2.   <DeleteConfirmation
3.     onCancel={handleStopRemovePlace}
4.     onConfirm={handleRemovePlace}
5.   />
6. </Modal>
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	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.
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	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	305
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	326
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	354
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	389
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	717
	 COURSE UPDATE: Switching to the Updated Content
This course received an update - learn more in this video and the announcements section.
To continue with the new, updated content, go to this lecture.

	
	

	739
	 COURSE UPDATE: Switch to Updated Content
This course received an update - learn more in this video and the announcements section.
To continue with the new, updated content switch to this lecture.

	
	





5. 퀴즈
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	Conditional Content & Dynamic Lists
	


2) [bookmark: _Toc150779124]퀴즈 1
	문제
	보기
	
	

	1
	
	From the perspective of a developer: What's one advantage of building a user interface by combining components?
	

	
	1
	Better performance
	

	
	
	That's wrong. Whilst you will later learn about techniques that allow you to improve application performance, components on their own do NOT provide a performance benefit. The overall app is the same, no matter if you split it into components or not.

	

	ㅇ
	2
	Small, reusable building blocks
	

	
	
	That's correct! As a developer, it's typically easier to work on smaller, more manageable building blocks. In addition, if a certain building block must be used in different parts of the UI, you can simply reuse it (instead of copying & pasting it) if built as a component.

	

	
	3
	More powerful features
	

	
	4
	Can build advanced websites
	

	2
	
	양식의 맨 위
When working with React: How is a new component defined?양식의 맨 아래

	

	
	1
	By adding a custom element like <Header /> to your HTML code
	

	
	
	That's wrong. That's how you would USE a custom component - but it's now how you DEFINE it.
	

	
	2
	By using JSX in your code files
	

	
	
	That's wrong. Custom components do indeed typically use JSX code and they are also typically used inside of JSX code but they're not DEFINED just by using JSX code.
	

	ㅇ
	3
	By creating a function that returns JSX code
	

	
	
	That's correct! A component, in React, is simply a function that returns renderable content - typically JSX code. After being defined, a custom component can be used like a built-in HTML element inside of other components' JSX code.

	

	
	4
	By using React's createComponent() function
	

	3
	
	양식의 맨 위
What's the purpose of JSX?양식의 맨 아래

	

	
	1
	It allows you to create custom components and elements
	

	
	
	That's wrong. Whilst you will typically use your components in JSX code, JSX is actually not a prerequisite. It's also not required to create custom components - instead that's done by creating a JavaScript function.

	

	
	2
	It allows you to work with React and components
	

	
	
	That's wrong. JSX is used a lot in React but you could use React without JSX.

	

	
	3
	It's required by React
	

	
	
	That's wrong. JSX is used a lot in React but you could use React without JSX.
	

	ㅇ
	4
	It allows you to define the target HTML code inside of your components
	

	
	
	That's correct. The idea behind JSX is that you have an easier time defining the target HTML code that should be generated by your components.

	

	4
	
	양식의 맨 위
Which statement about JSX is TRUE?
양식의 맨 아래

	

	ㅇ
	1
	JSX code is used to define the target UI / HTML code
	

	
	
	That's correct. JSX allows you to define the target UI / HTML code right inside your JavaScript code - and therefore right inside your components.

	

	
	2
	JSX code can only be used to output custom components
	

	
	3
	JSX code would run in the browser
	

	
	4
	JSX code must be stored in .html files
	

	5
	
	양식의 맨 위
What does React do with the components you use in the JSX code?
양식의 맨 아래

	

	
	1
	It generates a HTML file that's then served by the browser
	

	
	
	That's wrong. React does not generate any HTML file.
	

	ㅇ
	2
	It derives a component tree that's then used to perform commands that update the website DOM
	

	
	
	That's correct. Your JSX code leads to a tree-like code structure that "tells" React how the different components are related and how the UI should look like. It then executes appropriate commands to manipulate the real DOM to reflect that target structure / code.
	

	
	3
	It derives a HTML file that's then used to perform commands that update the website DOM
	

	
	4
	It generates a component tree that's then translated to an HTML file
	

	6
	
	How do you typically use custom components?
	

	ㅇ
	1
	You use custom components like HTML elements inside of JSX code
	

	
	
	That's correct!
	

	
	2
	You call the custom component functions inside of other component functions
	

	
	3
	You pass the custom component functions as identifiers to ReactDOM's render() method
	

	
	4
	You use custom components in the index.html or any other HTML file
	

	7
	
	Which statement about custom components is FALSE?
	

	
	1
	Custom components can be created as JavaScript functions
	

	
	
	That's the wrong choice because this statement is right. Custom components are created by simply defining a JavaScript function
	

	
	2
	To use custom components in JSX, they must start with an uppercase character
	

	
	
	That's the wrong choice because this statement is right. To use custom components in JSX code, their name must start with an uppercase character. That's how React tells them apart from built-in components / elements.
	

	
	3
	Custom components must return renderable content (typically JSX)
	

	
	
	That's the wrong choice because this statement is right. Custom components do indeed need to return renderable content.

	

	ㅇ
	4
	Custom components must be defined next to the components that want to use them
	

	
	
	That's the right choice because this statement is WRONG. You can define custom components wherever you want.

	


3) 퀴즈 2
	문제
	보기
	
	

	1
	
	양식의 맨 위
	

	
	
	Which syntax can be used to output dynamic values / JavaScript expressions in JSX?
	

	
	1
	[ ] (Square brackets)
	

	
	
	That's wrong. Using square brackets in your JSX code will simply display some square brackets on the screen.
	

	
	2
	( ) (Parentheses)
	

	
	
	That's wrong. Using parentheses in your JSX code will simply display some parentheses on the screen.
	

	ㅇ
	3
	{ } (Curly braces)
	

	
	
	That's correct!
	

	
	4
	{{ }} (Double curly braces)
	

	2
	
	Which values can be output as dynamic values in JSX (i.e., between curly braces)?
	

	
	1
	Any valid JavaScript statement
	

	
	
	That's wrong. JavaScript statements like function definitions, if-statements etc. can't bet used as part of your JSX code / between curly braces in JSX code.

	

	
	2
	Any valid React template instruction
	

	
	
	That's wrong - there is no such thing as a "React template" or "React template instruction".

	

	ㅇ
	3
	Any valid JavaScript expression
	

	
	
	That's correct. You could output expressions like "1 + 1", variables / constants that hold values, the result of calling a function etc.
	

	
	4
	Any valid React template expression
	

	3
	
	How should you typically load / use images in React projects?
	

	
	1
	Set the <img> src equal to a relative string path to the image
	

	
	
	That's wrong. Whilst this might work in some projects during development, chances are high that the paths would be incorrect after building the project for production and deploying it.

	

	ㅇ
	2
	Set the <img> src equal to the path generated via an import statement (that points at the image)
	

	
	
	That's correct. By "importing" the image, a production-safe path gets generated under the hood.
	

	
	3
	Set the <img> src equal to an absolute string path to the image
	

	
	4
	Set the <img> src equal to the image itself
	

	4
	
	How can you assign a dynamic value to an HTML element attribute?
	

	ㅇ
	1
	Via the same syntax you use for dynamic values in JSX in general: Curly braces
	

	
	
	That's correct. You simply replace the text value you would normally set for attributes with the dynamic (curly-brace-wrapped) value.
	

	
	2
	Via the special React attribute directive that can be added to all built-in and custom components
	

	
	3
	Via the same syntax you use for attributes in general: You set the value as a hard-coded string
	

	
	4
	Via the special React template attribute syntax that allows you to store dynamic values for attributes
	

	5
	
	Which core React concept can increase the reusability of React components
	

	
	1
	JSX
	

	
	
	That's wrong. JSX is definitely an important concept (especially for components) but it's not increasing the reusability.

	

	
	2
	Classes
	

	
	
	That's wrong. Classes don't have anything to do with that.

	

	
	3
	Functions
	

	
	
	That's wrong. Components are indeed defined as functions but that's true for all components - no matter how reusable they may be.

	

	ㅇ
	4
	Props
	

	
	
	That's correct! Props are essentially custom attributes that can be set on components.

	

	6
	
	How do "props" work in React?
	

	
	1
	You can set props ("custom attributes") on components to automatically output them in the component's JSX code
	

	
	
	That's wrong, props can be set as described but they're not output in the JSX code automatically.

	

	ㅇ
	2
	You can set props ("custom attributes") on components to then extract & use them in the receiving component
	

	
	
	That's correct! React automatically passes a props object as the first argument to the receiving component

	

	
	3
	You can set props ("custom attributes") on components which then receive them as automatically provided constants in the function body
	

	
	4
	You can set props ("custom attributes") on components which can then call a getProps() function to extract the received values
	

	7
	
	Which of the following four code examples for setting & extracting props would NOT work as intended?
I.e., which example will NOT output the text "Priority: 5" on the screen.
	

	
	1
	That's not the right choice. This syntax might look weird (and indeed also is unnecessarily complicated) but it would work. You can use "Rest properties" to group properties that have not been "pulled out" via destructuring into a new object ("props" in this case). So the "priority" prop could be extracted from the props object as shown.

	

	
	2
	That's not the right choice. React automatically passes a "props" object as a first argument to the component function. This object contains all props ("custom attributes") as key-value pairs (i.e., as properties). So accessing "priority" on "props" will work

	

	
	3
	That's not the right choice. This example will work as React automatically passed an object with all "custom attributes" as a first argument to the component function. Object destructuring can then be used as shown in this example to "pull out" the props the component needs.

	

	ㅇ
	4
	That's the right choice. The error is subtle but this example does NOT use object destructuring. So here, the "priority" prop is not pulled out of the props object. Instead, it's now the entire props object that's named "priority". This wouldn't be a problem since the name is up to you. But it's now the entire object that's output in the paragraph, not the "priority" property. Therefore, the output would not be "Priority: 5" but instead "Priority: [Object object]" (or something like that).

	


4) 퀴즈 3
	문제
	보기
	
	

	1
	
	How should you typically store your component functions?
	

	
	1
	All in one big file.
	

	
	
	That's wrong. You can do that and if you prefer that approach, it's okay. But it's not recommended because it makes the code less maintainable.

	

	
	2
	All in one component.
	

	
	
	That's wrong. Storing components inside of other components does not just lead to maintainability issues but also to performance issues.

	

	ㅇ
	3
	Split across multiple files (one component per file)
	

	
	
	That's correct - this is the recommended approach.

	

	
	4
	Split across multiple projects
	

	2
	
	What's the purpose of the special "children" prop?
	

	ㅇ
	1
	You can use it to pass and use content between your component's opening & closing tags.
	

	
	
	That's correct. "children" will receive whichever content you pass between the opening and closing tags of your component.

	

	
	2
	You're not allowed to use it since it's used internally by React.
	

	
	3
	You can use it to use a component more than once.
	

	
	4
	You can use it to pass data to built-in components (between their opening and closing tags)
	

	3
	
	How can you handle user events in React projects?
	

	
	1
	Via the built-in onEvent prop (e.g., onEvent('click'))
	

	
	
	That's wrong, there is no such built-in prop.

	

	
	2
	Via the built-in addEventListener() method (e.g., addEventListener('click'))
	

	
	
	That's wrong. Whilst this is how you would add event listeners to elements in vanilla JavaScript, that's not how you do it in React projects.

	

	
	3
	Via the built-in on-xyz prop (e.g., on-click)
	

	
	
	That's wrong - there are no built-in props like this

	

	ㅇ
	4
	Via the built-in onXYZ props (e.g., onClick)
	

	
	
	That's correct. The built-in elements support props like onClick to allow you to define functions that should be triggered when the specified event occurs.

	

	4
	
	To execute code upon events, which value must be passed to event props like onClick?
	

	
	1
	Any expression of your choice (e.g., onClick={age = 5})
	

	
	
	That's wrong. The expression code would be executed when the element with the prop is first rendered / evaluated, NOT when the event occurs.

	

	
	2
	A string value that contains the name of the function that should be executed (e.g., onClick="handleClick")
	

	
	
	That's wrong. This code wouldn't do anything and it would especially NOT lead to the handleClick function being executed

	

	ㅇ
	3
	A pointer to the function that should be executed (e.g., onClick={handleClick})
	

	
	
	That's correct. By using this code, React is able to call handleClick() when the event occurs.

	

	
	4
	The function execution of the function that should be executed (e.g., onClick={handleClick()})
	

	5
	
	How can you "configure" the execution of an event-dependent function (e.g., define which arguments get passed to it)?
	

	
	1
	You can't
	

	
	
	That's wrong, there are ways of gaining more control.

	

	
	2
	By executing the function yourself (e.g., onClick={handleClick(5)})
	

	
	
	That's wrong - this code will lead to the handleClick() function being executed too early (when the element to which the prop is added is evaluated / rendered for the first time). The function will NOT be executed when the event occurs.

	

	
	3
	By adding an event listener via the addEventListener() method (e.g., addEventListener('click'))
	

	
	
	That's wrong, using this method in React is pretty much always wrong. It's not the "React way" of handling events. You should use the event props (onClick etc).

	

	
	4
	By wrapping the function with another function (e.g., onClick={() => handleClick(5)})
	

	
	
	That's the correct choice! By wrapping the execution of your event handling function with another function, it's that other function that's passed as a value to the event-handling prop. Therefore, your main function (=> handleClick in this example) does NOT get executed too early but instead only when the event occurs.

	


5) 퀴즈 4
	문제
	보기
	
	

	1
	
	What's the purpose of "State" in React apps?
	

	
	1
	It's data that's passed to other components
	

	
	
	That's wrong - that's the "props" concept

	

	ㅇ
	2
	It's data that, when changed, causes React to re-evaluate a component
	

	
	
	That's correct! The component to which the state belongs and its child and descendent components will be re-evaluated as state changes.

	

	
	3
	It's data that, when changed, always causes React to re-evaluate all components in the app
	

	
	4
	It's data that, when changed, can't be passed to components anymore
	

	2
	
	There are two "Rules of Hooks". Which of the following statements is NOT TRUE according to those rules?
	

	ㅇ
	1
	You must not call React Hooks next to other Hooks.
	

	
	
	That's the right choice because this statement is false - you ARE ALLOWED to call as many Hook function as needed. And they may (and often will) be positioned directly next to each other.

	

	
	2
	You must not call React Hooks outside of the component function.
	

	
	3
	You must not call React Hooks inside of if statements.
	

	
	4
	You must not call React Hooks inside of nested functions.
	

	3
	
	Will the following code work?
1. import { useState } from 'react';
2.  
3. function SomeComponent() {
4.   const [selected, setSelected] = useState(false);
5.  
6.   function handleClick() {
7.     const [selected, setSelected] = useState(true);
8.   }
9.  
10.   return <button onClick={handleClick}>Select</button>
11. }

	

	ㅇ
	1
	No
	

	
	
	That's the correct choice. This code violates the "Rules of Hooks" as it calls a Hook function inside of a nested function.

	

	
	2
	Yes
	

	
	
	Yes, if no SomeComponent is not nested into some other component
	

	4
	
	What's the idea behind "derived state" / "computed values"?
	

	
	1
	It's an older pattern that shouldn't be used anymore - use state instead.
	

	
	
	That's wrong - you absolutely should use computed values / derived state whenever possible.

	

	
	2
	Computed values are values that should be managed as separate state which is then derived from other state values.
	

	
	
	That's wrong, the idea is to NOT manage them as extra state.

	

	ㅇ
	3
	Computed values are values that shouldn't be managed as separate state since they can be derived from other state.
	

	
	
	That's correct.
	


6) 퀴즈 5
	문제
	보기
	
	

	1
	
	Which of the following code snippets WILL NOT output the content conditionally?
	

	
	1
	That's the wrong choice because this code will work. You can display content conditionally with help of the logical AND operator (&&)

	

	
	2
	That's the wrong choice because this code will work. You can display content conditionally with help of a ternary expression.

	

	
	3
	That's the wrong choice because this code will work. You can display content conditionally with help of a conditionally set variable.

	

	ㅇ
	4
	That's the right choice because this code won't work. There is no default "show" prop that could be set on built-in elements to show (or hide) them.

	

	2
	
	Which code snippet WILL WORK and output a list dynamically?
	

	
	1
	That's the wrong choice - there is no built-in list function.

	

	ㅇ
	2
	That's the right choice!

	

	
	3
	That's the wrong choice - there is no built-in transform function.

	

	
	4
	That's the wrong choice because this code will not work. You can't use a for loop inside of JSX code and output content like this.

	

	3
	
	What's the problem with this code?
1. <div>
2.   {someArray.map(item => <p>{item}</p>)}
3. </div>

	

	
	1
	You can only map to <li>, not to <p>
	

	
	
	That's wrong, you don't have to use <li></li>

	

	
	2
	You can only output list data between <ul> tags, not <div>
	

	
	
	That's wrong - you can output dynamic data anywhere you want.

	

	ㅇ
	3
	You should add a key prop to the list item
	

	
	
	That's the right choice because that's the problem with this code. When dynamically outputting a list of elements, every element should receive a unique "key" to help React tell the list items apart.

	

	
	4
	You should add a list prop to the <ul>
	

	
	
	That's wrong, this answer doesn't make any sense. There is no "list" prop that could be set.
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