[bookmark: _Hlk139969100][bookmark: _Hlk106290803]【한글자막】 React 완벽 가이드 with Redux, Next.js, TypeScript
React - The Complete Guide 2023 (incl. React Router & Redux)

1. 섹센 제목 번역 필요
	번호
	Wjtb 섹션명
	번역(여기에 번역하시면 됩니다)
	비고

	3
	React Essentials - Components, JSX, Props, State & More
	
	새로생성

	4
	React Essentials - Deep Dive
	
	새로생성

	5
	React Essentials - Practice Project
	
	새로생성

	8
	Working with Refs & Portals
	
	제목변경필요

	9
	Practice Project: Project Management App (with Components, State, Refs & More)
	
	새로생성

	10
	React's Context API & useReducer - Advanced State Management
	
	새로생성

	11
	Handling Side Effects & Working with the useEffect() Hook
	
	제목변경필요

	12
	Practice Project: Building a Quiz App
	
	제목변경필요

[bookmark: _Hlk126163540]

2. 새로 생긴 강의명(영상, 자막 번역 및 생성 필요): 영상 230개
	번호
	강의명
	옆의 강의명을 번역하시면 됩니다
	비고

	9
	 Creating React Projects
	
	

	10
	 Why Do You Need A Special Project Setup?
	
	

	34
	 Module Introduction
	
	

	35
	 It's All About Components! [Core Concept]
	
	

	36
	 Setting Up The Starting Project
	
	

	37
	 JSX & React Components [Core Concept]
	
	

	38
	 Creating & Using a First Custom Component
	
	

	40
	 How React Handles Components & How It Builds A "Component Tree" [Core Concept]
	
	

	41
	 Using & Outputting Dynamic Values [Core Concept]
	
	

	42
	 Setting HTML Attributes Dynamically & Loading Image Files
	
	

	43
	 Making Components Reusable with Props [Core Concept]
	
	

	44
	 Alternative Props Syntaxes
	
	

	46
	 Best Practice: Storing Components in Files & Using a Good Project Structure
	
	

	47
	 Storing Component Style Files Next To Components
	
	

	48
	 Component Composition: The special "children" Prop [Core Concept]
	
	

	49
	 Reacting to Events [Core Concept]
	
	

	50
	 Passing Functions as Values to Props
	
	

	51
	 Passing Custom Arguments to Event Functions
	
	

	52
	 How NOT to Update the UI - A Look Behind The Scenes of React [Core Concept]
	
	

	53
	 Managing State & Using Hooks [Core Concept]
	
	

	54
	 Deriving & Outputting Data Based on State
	
	

	55
	 Rendering Content Conditionally
	
	

	56
	 CSS Styling & Dynamic Styling
	
	

	57
	 Outputting List Data Dynamically
	
	

	58
	 Module Summary
	
	

	59
	 Module Introduction
	
	

	60
	 You Don't Have To Use JSX!
	
	

	61
	 Working with Fragments
	
	

	62
	 When Should You Split Components?
	
	

	63
	 Splitting Components By Feature & State
	
	

	64
	 Problem: Props Are Not Forwarded To Inner Elements
	
	

	65
	 Forwarding Props To Wrapped Elements
	
	

	66
	 Working with Multiple JSX Slots
	
	

	67
	 Setting Component Types Dynamically
	
	

	68
	 Setting Default Prop Values
	
	

	69
	 Onwards To The Next Project & Advanced Concepts
	
	

	70
	 Not All Content Must Go Into Components
	
	

	72
	 New Project: First Steps Towards Our Tic-Tac-Toe Game
	
	

	73
	 Concept Repetition: Splitting Components & Building Reusable Components
	
	

	74
	 Concept Repetition: Working with State
	
	

	75
	 Component Instances Work In Isolation!
	
	

	76
	 Conditional Content & A Suboptimal Way Of Updating State
	
	

	77
	 Best Practice: Updating State Based On Old State Correctly
	
	

	78
	 User Input & Two-Way-Binding
	
	

	79
	 Rendering Multi-Dimensional Lists
	
	

	80
	 Best Practice: Updating Object State Immutably
	
	

	81
	 Lifting State Up [Core Concept]
	
	

	82
	 Avoid Intersecting States!
	
	

	83
	 Prefer Computed Values & Avoid Unnecessary State Management
	
	

	84
	 Deriving State From Props
	
	

	85
	 Sharing State Across Components
	
	

	86
	 Reducing State Management & Identifying Unnecessary State
	
	

	87
	 Disabling Buttons Conditionally
	
	

	88
	 Outsourcing Data Into A Separate File
	
	

	89
	 Lifting Computed Values Up
	
	

	90
	 Deriving Computed Values From Other Computed Values
	
	

	91
	 Tic-Tac-Toe Game: The "Game Over" Screen & Checking for a Draw
	
	

	92
	 Why Immutability Matters - Always!
	
	

	93
	 When NOT To Lift State Up
	
	

	94
	 An Alternative To Lifting State Up
	
	

	95
	 Final Polishing & Improving Components
	
	

	96
	 Module Introduction & A Challenge For You!
	
	

	97
	 Adding a Header Component
	
	

	98
	 Getting Started with a User Input Component
	
	

	99
	 Handling Events & Using Two-Way-Binding
	
	

	100
	 Lifting State Up
	
	

	101
	 Computing Values & Properly Handling Number Values
	
	

	102
	 Outputting Results in a List & Deriving More Values
	
	

	103
	 Outputting Content Conditionally
	
	

	104
	 Module Introduction & Starting Project
	
	

	105
	 Splitting CSS Code Across Multiple Files
	
	

	106
	 Styling React Apps with Vanilla CSS - Pros & Cons
	
	

	107
	 Vanilla CSS Styles Are NOT Scoped To Components!
	
	

	108
	 Styling React Apps with Inline Styles
	
	

	109
	 Dynamic & Conditional Inline Styles
	
	

	110
	 Dynamic & Conditional Styling with CSS Files & CSS Classes
	
	

	111
	 Scoping CSS Rules with CSS Modules
	
	

	112
	 Introducing "Styled Components" (Third-party Package)
	
	

	113
	 Creating Flexible Components with Styled Components
	
	

	114
	 Dynamic & Conditional Styling with Styled Components
	
	

	115
	 Styled Components: Pseudo Selectors, Nested Rules & Media Queries
	
	

	116
	 Creating Reusable Components & Component Combinations
	
	

	117
	 Introducing Tailwind CSS For React App Styling
	
	

	118
	 Adding & Using Tailwind CSS In A React Project
	
	

	119
	 Tailwind: Media Queries & Pseudo Selectors
	
	

	120
	 Dynamic & Conditional Styling with Tailwind
	
	

	121
	 Migrating The Demo App to Tailwind CSS
	
	

	122
	 Tailwind CSS: Pros & Cons
	
	

	134
	 The Starting Project
	
	

	137
	 Understanding React's "Strict Mode"
	
	

	139
	 Module Introduction & Starting Project
	
	

	140
	 Repetition: Managing User Input with State (Two-Way-Binding)
	
	

	142
	 Introducing Refs: Connecting & Accessing HTML Elements via Refs
	
	

	143
	 Manipulating the DOM via Refs
	
	

	144
	 Refs vs State Values
	
	

	145
	 Adding Challenges to the Demo Project
	
	

	146
	 Setting Timers & Managing State
	
	

	147
	 Using Refs for More Than "DOM Element Connections"
	
	

	148
	 Adding a Modal Component
	
	

	149
	 Forwarding Refs to Custom Components
	
	

	150
	 Exposing Component APIs via the useImperativeHandle Hook
	
	

	151
	 More Examples: When To Use Refs & State
	
	

	152
	 Sharing State Across Components
	
	

	153
	 Enhancing the Demo App "Result Modal"
	
	

	155
	 Introducing & Understanding "Portals"
	
	

	166
	 Module Introduction & Starting Project
	
	

	167
	 Adding a "Projects Sidebar" Component
	
	

	168
	 Styling the Sidebar & Button with Tailwind CSS
	
	

	169
	 Adding the "New Project" Component & A Reusable "Input" Component
	
	

	170
	 Styling Buttons & Inputs with Tailwind CSS
	
	

	171
	 Splitting Components to Split JSX & Tailwind Styles (for Higher Reusability)
	
	

	172
	 Managing State to Switch Between Components
	
	

	173
	 Collecting User Input with Refs & Forwarded Refs
	
	

	174
	 Handling Project Creation & Updating the UI
	
	

	175
	 Validating User Input & Showing an Error Modal via useImperativeHandle
	
	

	176
	 Styling the Modal via Tailwind CSS
	
	

	177
	 Making Projects Selectable & Viewing Project Details
	
	

	178
	 Handling Project Deletion
	
	

	179
	 Adding "Project Tasks" & A Tasks Component
	
	

	180
	 Managing Tasks & Understanding Prop Drilling
	
	

	181
	 Clearing Tasks & Fixing Minor Bugs
	
	

	182
	 Module Introduction
	
	

	183
	 Understanding Prop Drilling & Project Overview
	
	

	184
	 Prop Drilling: Component Composition as a Solution
	
	

	185
	 Introducing the Context API
	
	

	186
	 Creating & Providing The Context
	
	

	187
	 Consuming the Context
	
	

	188
	 Linking the Context to State
	
	

	189
	 A Different Way Of Consuming Context
	
	

	190
	 What Happens When Context Values Change?
	
	

	191
	 Migrating the Entire Demo Project to use the Context API
	
	

	192
	 Outsourcing Context & State Into a Separate Provider Component
	
	

	193
	 Introducing the useReducer Hook
	
	

	194
	 Dispatching Actions & Editing State with useReducer
	
	

	195
	 Module Introduction & Starting Project
	
	

	196
	 What's a "Side Effect"? A Thorough Example
	
	

	197
	 A Potential Problem with Side Effects: An Infinite Loop
	
	

	198
	 Using useEffect for Handling (Some) Side Effects
	
	

	199
	 Not All Side Effects Need useEffect
	
	

	200
	 useEffect Not Needed: Another Example
	
	

	201
	 Preparing Another Use-Case For useEffect
	
	

	202
	 Using useEffect for Syncing With Browser APIs
	
	

	203
	 Understanding Effect Dependencies
	
	

	205
	 Preparing Another Problem That Can Be Fixed with useEffect
	
	

	206
	 Introducing useEffect's Cleanup Function
	
	

	207
	 The Problem with Object & Function Dependencies
	
	

	208
	 The useCallback Hook
	
	

	209
	 useEffect's Cleanup Function: Another Example
	
	

	210
	 Optimizing State Updates
	
	

	234
	 Module Introduction & Starting Project
	
	

	235
	 A First Component & Some State
	
	

	236
	 Deriving Values, Outputting Questions & Registering Answers
	
	

	237
	 Shuffling Answers & Adding Quiz Logic
	
	

	238
	 Adding Question Timers
	
	

	239
	 Working with Effect Dependencies & useCallback
	
	

	240
	 Using Effect Cleanup Functions & Using Keys for Resetting Components
	
	

	241
	 Highlighting Selected Answers & Managing More State
	
	

	242
	 Splitting Components Up To Solve Problems
	
	

	243
	 Moving Logic To Components That Actually Need It ("Moving State Down")
	
	

	244
	 Setting Different Timers Based On The Selected Answer
	
	

	245
	 Outputting Quiz Results
	
	

	267
	 Module Introduction
	
	

	268
	 React Builds A Component Tree / How React Works Behind The Scenes
	
	

	269
	 Analyzing Component Function Executions via React's DevTools Profiler
	
	

	270
	 Avoiding Component Function Executions with memo()
	
	

	271
	 Avoiding Component Function Executions with Clever Structuring
	
	

	272
	 Understanding the useCallback() Hook
	
	

	273
	 Understanding the useMemo() Hook
	
	

	274
	 React Uses A Virtual DOM - Time To Explore It!
	
	

	275
	 Why Keys Matter When Managing State!
	
	

	276
	 More Reasons For Why Keys Matter
	
	

	277
	 Using Keys For Resetting Components
	
	

	278
	 State Scheduling & Batching
	
	

	279
	 Optimizing React with MillionJS
	
	

	290
	 Module Introduction
	
	

	291
	 How (Not) To Connect To A Database
	
	

	292
	 Starting Project & Dummy Backend API
	
	

	293
	 Preparing the App For Data Fetching
	
	

	294
	 How NOT To Send HTTP Requests (And Why It's Wrong)
	
	

	295
	 Sending HTTP Requests (GET Request) via useEffect
	
	

	296
	 Using async / await
	
	

	297
	 Handling Loading States
	
	

	298
	 Handling HTTP Errors
	
	

	299
	 Transforming Fetched Data
	
	

	300
	 Extracting Code & Improving Code Structure
	
	

	301
	 Sending Data with POST Requests
	
	

	302
	 Using Optimistic Updating
	
	

	303
	 Deleting Data (via DELETE HTTP Requests)
	
	

	304
	 Practice: Fetching Data
	
	

	319
	 Module Introduction & Starting Project
	
	

	320
	 Revisiting the "Rules of Hooks" & Why To Use Hooks
	
	

	321
	 Creating a Custom Hook
	
	

	322
	 Custom Hook: Managing State & Returning State Values
	
	

	323
	 Exposing Nested Functions From The Custom Hook
	
	

	324
	 Using A Custom Hook in Multiple Components
	
	

	325
	 Creating Flexible Custom Hooks
	
	

	338
	 Module Introduction & Starting Project
	
	

	339
	 What Are Forms & What's Tricky About Them?
	
	

	340
	 Handling Form Submission
	
	

	341
	 Managing & Getting User Input via State & Generic Handlers
	
	

	342
	 Getting User Input via Refs
	
	

	343
	 Getting Values via FormData & Native Browser APIs
	
	

	344
	 Resetting Forms
	
	

	345
	 Validating Input on Every Keystroke via State
	
	

	346
	 Validating Input Upon Lost Focus (Blur)
	
	

	347
	 Validating Input Upon Form Submission
	
	

	348
	 Validating Input via Built-in Validation Props
	
	

	349
	 Mixing Custom & Built-in Validation Logic
	
	

	350
	 Building & Using a Reusable Input Component
	
	

	351
	 Outsourcing Validation Logic
	
	

	352
	 Creating a Custom useInput Hook
	
	

	353
	 Using Third-Party Form Libraries
	
	

	372
	 Module Introduction & Starting Project
	
	

	373
	 Planning the App & Adding a First Component
	
	

	374
	 Fetching Meals Data (GET HTTP Request)
	
	

	375
	 Adding a "MealItem" Component
	
	

	376
	 Formatting & Outputting Numbers as Currency
	
	

	377
	 Creating a Configurable & Flexible Custom Button Component
	
	

	378
	 Getting Started with Cart Context & Reducer
	
	

	379
	 Finishing & Using the Cart Context & Reducer
	
	

	380
	 Adding a Reusable Modal Component with useEffect
	
	

	381
	 Opening the Cart in the Modal via a New Context
	
	

	382
	 Working on the Cart Items
	
	

	383
	 Adding a Custom Input Component & Managing Modal Visibility
	
	

	384
	 Handling Form Submission & Validation
	
	

	385
	 Sending a POST Request with Order Data
	
	

	386
	 Adding a Custom HTTP Hook & Avoiding Common Errors
	
	

	387
	 Handling HTTP Loading & Error States
	
	

	388
	 Finishing Touches
	
	

	659
	 Course Update Overview, Explanation & Migration Guide
	
	

3. Udemy-Wjtb 재생 시간 다른 강의(영상, 자막 번역 및 교체 필요): 영상 10개 (여기는 제목 번역은 필요 없음)
	
	wjtb강의명
	
	udemy강의명
	비고

	1
	 Welcome To The Course!
	1
	 이 코스에 오신 것을 환영합니다!
	

	5
	 About This Course & Course Outline
	5
	 이 코스 소개 및 개요
	

	6
	 The Two Ways (Paths) Of Taking This Course
	6
	 이 코스를 수강하는 두 가지 방법(경로)
	

	7
	 Getting The Most Out Of This Course
	7
	 강의를 최대한 활용하는 방법
	

	133
	 Module Introduction
	105
	 모듈 소개
	

	135
	 Understanding React Error Messages
	106
	 리액트 오류 메시지 이해하기
	

	136
	 Using the Browser Debugger & Breakpoints
	107
	 코드 흐름 및 경고 분석
	

	138
	 Using the React DevTools (Browser Extension)
	109
	 리액트 DevTools 사용하기
	

	430
	 Redux & Async Code
	288
	 리덕스 및 비동기 코드
	

	657
	 Course Roundup
	583
	 마무리하며
	

4. 텍스트 강의
	번호
	강의내용
	번역 (여기에 번역하시면 됩니다)
	비고

	39
	 A Closer Look: Components & File Extensions
At this point, you've built a first custom component and you, of course, also worked with the App component.
For the moment, both components are stored in the App.jsx file (this will change later though).
.jsx is a file extension that's not supported by the browser! It's working because you're working in a React project that supports this special extension. Because this extension "tells" the underlying build process (which is running behind the scenes when the development server is running) that a file contains JSX code (which is also not supported by browsers).
It's important to understand that it's really just that build process that cares about this extension.
And therefore, you'll also find React projects that don't use .jsx but instead just .js as a file extension. And in those .js files, you'll also find JSX code. Because it simply depends on the underlying build process which extension is expected when using this JSX syntax in a file.
Since it doesn't work in the browser either way, there is no hard rule regarding this. Instead, you'll find projects that require .jsx (like the project setup we use in this course) and you'll find projects that also support .js (with JSX code inside).
I'm emphasizing this here so that you're not confused if you encounter React projects that don't use .jsx files.
In addition, you'll also find projects that require the file extension as part of file imports (e.g., import App from './App.jsx') and you'll find other projects that don't require this (i.e., there, you could just use import App from './App').
This, again, has nothing to do with the browser or "standard JavaScript" - instead it simply depends on the requirements of the code build process that's part of the project setup you chose.

	
	

	45
	 More Prop Syntaxes
Beyond the various ways of setting and extracting props about which you learned in the previous lecture, there are even more ways of dealing with props.
But no worries, you'll see all these different features & syntaxes in action throughout the course!
Passing a Single Prop Object
If you got data that's already organized as a JavaScript object, you can pass that object as a single prop value instead of splitting it across multiple props.
I.e., instead of
1. <CoreConcept
2. title={CORE_CONCEPTS[0].title}
3. description={CORE_CONCEPTS[0].description}
4. image={CORE_CONCEPTS[0].image} />
or
1. <CoreConcept
2. {...CORE_CONCEPTS[0]} />
you could also pass a single concept (or any name of your choice) prop to the CoreConcept component:
1. <CoreConcept
2. concept={CORE_CONCEPTS[0]} />
In the CoreConcept component, you would then get that one single prop:
1. export default function CoreConcept({ concept }) {
2. // Use concept.title, concept.description etc.
3. // Or destructure the concept object: const { title, description, image } = concept;
4. }
It is entirely up to you which syntax & approach you prefer.
Grouping Received Props Into a Single Object
You can also pass multiple props to a component and then, in the component function, group them into a single object via JavaScript's "Rest Property" syntax.
I.e., if a component is used like this:
1. <CoreConcept
2. title={CORE_CONCEPTS[0].title}
3. description={CORE_CONCEPTS[0].description}
4. image={CORE_CONCEPTS[0].image} />
You could group the received props into a single object like this:
1. export default function CoreConcept({ ...concept }) {
2. // ...concept groups multiple values into a single object
3. // Use concept.title, concept.description etc.
4. // Or destructure the concept object: const { title, description, image } = concept;
5. }
If that syntax is a bit confusing - worry not! You'll also see concrete examples for this syntax (and for why you might want to use it in certain situations) throughout the course!
Default Prop Values
Sometimes, you'll build components that may receive an optional prop. For example, a custom Button component may receive a type prop.
So the Button component should be usable either with a type being set:
1. <Button type="submit" caption="My Button" />
Or without it:
1. <Button caption="My Button" />
To make this component work, you might want to set a default value for the type prop - in case it's not passed.
This can easily be achieved since JavaScript supports default values when using object destructuring:
1. export default function Button({ caption, type = "submit" }) {
2. // caption has no default value, type has a default value of "submit"
3. }

	
	

	71
	 Closer Look: public/ vs assets/ for Image Storage
The public/ Folder
As shown in the previous lecture you can store images in the public/ folder and then directly reference them from inside your index.html or index.css files.
The reason for that is that images (or, in general: files) stored in public/ are made publicly available by the underlying project development server & build process. Just like index.html, those files can directly be visited from inside the browser and can therefore also be requested by other files.
If you try loading localhost:5173/some-image.jpg, you'll be able to see that image (if it exists in the public/ folder, of course).
The src/assets/ Folder
You can also store images in the src/assets/ folder (or, actually, anywhere in the src folder).
So what's the difference compared to public/?
Any files (of any format) stored in src (or subfolders like src/assets/) are not made available to the public. They can't be accessed by website visitors. If you try loading localhost:5173/src/assets/some-image.jpg, you'll get an error.
Instead, files stored in src/ (and subfolders) can be used in your code files. Images imported into code files are then picked up by the underlying build process, potentially optimized, and kind of "injected" into the public/ folder right before serving the website. Links to those images are automatically generated and used in the places where you referenced the imported images.
Which Folder Should You Use?
You should use the public/ folder for any images that should not be handled by the build process and that should be generally available. Good candidates are images used directly in the index.html file or favicons.
On the other hand, images that are used inside of components should typically be stored in the src/ folder (e.g., in src/assets/).

	
	

	123
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	141
	 Repetition: Fragments
In earlier versions of this course, this section also introduced the concept of "React Fragments" (<Fragment> ... </Fragment> or <> ... </>).
The newer version of the course already introduced this concept in the "React Essentials" sections.
But since it's a key concept that will be used throughout the entire course (and, in general, in pretty much all React projects), it's time for a brief refresher!
When writing JSX code, there's one important rule: A JSX value must have only one root element.
For example, the following code would be invalid and cause an error:
1. return (
2. <h2>Welcome!</h2>
3. <p>React is awesome!</p>
4.);
So would this code:
1. const content = (
2. <h2>Welcome!</h2>
3. <p>React is awesome!</p>
4.);
In both snippets, the JSX value has two sibling root elements - and that's not allowed!
One solution would be to wrap these elements into a <div> - which then acts as a single root JSX element:
1. return (
2. <div>
3. <h2>Welcome!</h2>
4. <p>React is awesome!</p>
5. </div>
6.);
This would work and therefore is an acceptable solution.
But it has a downside: You now have that extra <div> in your DOM - even though you don't really need it (besides for getting rid of the this error).
That's why React offers a better solution: A special JSX element called "React Fragment".
It can be used as a wrapper to ensure that there's only one root JSX element whilst at the same time not rendering any DOM element.
You can use it like this:
1. import { Fragment } from 'react';
2.
3. // ... other code ...
4.
5. return (
6. <Fragment>
7. <h2>Welcome!</h2>
8. <p>React is awesome!</p>
9. </Fragment>
10.);
Most React projects (e.g., projects created with Vite or create-react-app) offer an even shorter form:
1. // no import needed
2.
3. return (
4. <>
5. <h2>Welcome!</h2>
6. <p>React is awesome!</p>
7. </>
8.);

	
	

	154
	 Closing the Modal via the ESC (Escape) Key
The <dialog> element allows website visitors to close the opened dialog by pressing the ESC (Escape) key on their keyboard.
Currently, this will not trigger the onReset function though (unlike closing the dialog with a button click).
To make sure that onReset gets triggered when the dialog is closed via the escape key, you should add the built-in onClose prop to the <dialog> element and bind it to the onReset prop value.
Like this:
1. <dialog ref={dialog} className="result-modal" onClose={onReset}
2. ...
3. </dialog>

	
	

	156
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	204
	 Fixing a Small Bug
The <dialog> element can also be closed by pressing the ESC key on the keyboard. In that case, the dialog will disappear but the state passed to the open prop (i.e., the modalIsOpen state) will not be set to false.
Therefore, the modal can't be opened again (because modalIsOpen still is true - the UI basically now is not in sync with the state anymore).
To fix this issue, we must listen to the modal being closed by adding the built-in onClose prop to the <dialog>. The event is then "forwarded" to the App component by accepting a custom onClose prop on the Modal component.
The Modal component therefore should look like this:
1. import { useRef, useEffect } from 'react';
2. import { createPortal } from 'react-dom';
3.
4. function Modal({ open, children, onClose }) {
5. const dialog = useRef();
6.
7. useEffect(() => {
8. if (open) {
9. dialog.current.showModal();
10. } else {
11. dialog.current.close();
12. }
13. }, [open]);
14.
15. return createPortal(
16. <dialog className="modal" ref={dialog} onClose={onClose}>
17. {children}
18. </dialog>,
19. document.getElementById('modal')
20.);
21. }
22.
23. export default Modal;
In the App component, we can now set the handleStopRemovePlace function as a value for the onClose prop on the <Modal> component:
1. <Modal open={modalIsOpen} onClose={handleStopRemovePlace}>
2. <DeleteConfirmation
3. onCancel={handleStopRemovePlace}
4. onConfirm={handleRemovePlace}
5. />
6. </Modal>

	
	

	211
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	246
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	305
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	326
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	354
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	389
	 --- LEGACY CONTENT BELOW ---
This course received an update - learn more in this video and the announcements section.
The remaining lectures of this section are LEGACY lectures - i.e., part of the "old course" before the latest course update.

>>> This is the next lecture you should view.
(if you completed the lectures before this lecture here)

The old lectures of this section (after this lecture) are kept around for a transition period so that you don't lose your progress & can finish those lectures in case you started them before the course update.
You can mark the old lectures (i.e., the lectures in this section that come after this lecture here) as "Completed" manually (in the Udemy sidebar) so that your course progress accurately reflects the fact that you finished this section.

	
	

	717
	 COURSE UPDATE: Switching to the Updated Content
This course received an update - learn more in this video and the announcements section.
To continue with the new, updated content, go to this lecture.

	
	

	739
	 COURSE UPDATE: Switch to Updated Content
This course received an update - learn more in this video and the announcements section.
To continue with the new, updated content switch to this lecture.

	
	

5. 퀴즈
1) [bookmark: _Toc150779123]제목
	퀴즈
	
	

	1
	Components & JSX
	

	2
	Dynamic Values & Props
	

	3
	Best Practices & Event Handling
	

	4
	State & Computed Values
	

	5
	Conditional Content & Dynamic Lists
	

2) [bookmark: _Toc150779124]퀴즈 1
	문제
	보기
	
	

	1
	
	From the perspective of a developer: What's one advantage of building a user interface by combining components?
	

	
	1
	Better performance
	

	
	
	That's wrong. Whilst you will later learn about techniques that allow you to improve application performance, components on their own do NOT provide a performance benefit. The overall app is the same, no matter if you split it into components or not.

	

	ㅇ
	2
	Small, reusable building blocks
	

	
	
	That's correct! As a developer, it's typically easier to work on smaller, more manageable building blocks. In addition, if a certain building block must be used in different parts of the UI, you can simply reuse it (instead of copying & pasting it) if built as a component.

	

	
	3
	More powerful features
	

	
	4
	Can build advanced websites
	

	2
	
	양식의 맨 위
When working with React: How is a new component defined?양식의 맨 아래

	

	
	1
	By adding a custom element like <Header /> to your HTML code
	

	
	
	That's wrong. That's how you would USE a custom component - but it's now how you DEFINE it.
	

	
	2
	By using JSX in your code files
	

	
	
	That's wrong. Custom components do indeed typically use JSX code and they are also typically used inside of JSX code but they're not DEFINED just by using JSX code.
	

	ㅇ
	3
	By creating a function that returns JSX code
	

	
	
	That's correct! A component, in React, is simply a function that returns renderable content - typically JSX code. After being defined, a custom component can be used like a built-in HTML element inside of other components' JSX code.

	

	
	4
	By using React's createComponent() function
	

	3
	
	양식의 맨 위
What's the purpose of JSX?양식의 맨 아래

	

	
	1
	It allows you to create custom components and elements
	

	
	
	That's wrong. Whilst you will typically use your components in JSX code, JSX is actually not a prerequisite. It's also not required to create custom components - instead that's done by creating a JavaScript function.

	

	
	2
	It allows you to work with React and components
	

	
	
	That's wrong. JSX is used a lot in React but you could use React without JSX.

	

	
	3
	It's required by React
	

	
	
	That's wrong. JSX is used a lot in React but you could use React without JSX.
	

	ㅇ
	4
	It allows you to define the target HTML code inside of your components
	

	
	
	That's correct. The idea behind JSX is that you have an easier time defining the target HTML code that should be generated by your components.

	

	4
	
	양식의 맨 위
Which statement about JSX is TRUE?
양식의 맨 아래

	

	ㅇ
	1
	JSX code is used to define the target UI / HTML code
	

	
	
	That's correct. JSX allows you to define the target UI / HTML code right inside your JavaScript code - and therefore right inside your components.

	

	
	2
	JSX code can only be used to output custom components
	

	
	3
	JSX code would run in the browser
	

	
	4
	JSX code must be stored in .html files
	

	5
	
	양식의 맨 위
What does React do with the components you use in the JSX code?
양식의 맨 아래

	

	
	1
	It generates a HTML file that's then served by the browser
	

	
	
	That's wrong. React does not generate any HTML file.
	

	ㅇ
	2
	It derives a component tree that's then used to perform commands that update the website DOM
	

	
	
	That's correct. Your JSX code leads to a tree-like code structure that "tells" React how the different components are related and how the UI should look like. It then executes appropriate commands to manipulate the real DOM to reflect that target structure / code.
	

	
	3
	It derives a HTML file that's then used to perform commands that update the website DOM
	

	
	4
	It generates a component tree that's then translated to an HTML file
	

	6
	
	How do you typically use custom components?
	

	ㅇ
	1
	You use custom components like HTML elements inside of JSX code
	

	
	
	That's correct!
	

	
	2
	You call the custom component functions inside of other component functions
	

	
	3
	You pass the custom component functions as identifiers to ReactDOM's render() method
	

	
	4
	You use custom components in the index.html or any other HTML file
	

	7
	
	Which statement about custom components is FALSE?
	

	
	1
	Custom components can be created as JavaScript functions
	

	
	
	That's the wrong choice because this statement is right. Custom components are created by simply defining a JavaScript function
	

	
	2
	To use custom components in JSX, they must start with an uppercase character
	

	
	
	That's the wrong choice because this statement is right. To use custom components in JSX code, their name must start with an uppercase character. That's how React tells them apart from built-in components / elements.
	

	
	3
	Custom components must return renderable content (typically JSX)
	

	
	
	That's the wrong choice because this statement is right. Custom components do indeed need to return renderable content.

	

	ㅇ
	4
	Custom components must be defined next to the components that want to use them
	

	
	
	That's the right choice because this statement is WRONG. You can define custom components wherever you want.

	

3) 퀴즈 2
	문제
	보기
	
	

	1
	
	양식의 맨 위
	

	
	
	Which syntax can be used to output dynamic values / JavaScript expressions in JSX?
	

	
	1
	[] (Square brackets)
	

	
	
	That's wrong. Using square brackets in your JSX code will simply display some square brackets on the screen.
	

	
	2
	() (Parentheses)
	

	
	
	That's wrong. Using parentheses in your JSX code will simply display some parentheses on the screen.
	

	ㅇ
	3
	{ } (Curly braces)
	

	
	
	That's correct!
	

	
	4
	{{ }} (Double curly braces)
	

	2
	
	Which values can be output as dynamic values in JSX (i.e., between curly braces)?
	

	
	1
	Any valid JavaScript statement
	

	
	
	That's wrong. JavaScript statements like function definitions, if-statements etc. can't bet used as part of your JSX code / between curly braces in JSX code.

	

	
	2
	Any valid React template instruction
	

	
	
	That's wrong - there is no such thing as a "React template" or "React template instruction".

	

	ㅇ
	3
	Any valid JavaScript expression
	

	
	
	That's correct. You could output expressions like "1 + 1", variables / constants that hold values, the result of calling a function etc.
	

	
	4
	Any valid React template expression
	

	3
	
	How should you typically load / use images in React projects?
	

	
	1
	Set the src equal to a relative string path to the image
	

	
	
	That's wrong. Whilst this might work in some projects during development, chances are high that the paths would be incorrect after building the project for production and deploying it.

	

	ㅇ
	2
	Set the src equal to the path generated via an import statement (that points at the image)
	

	
	
	That's correct. By "importing" the image, a production-safe path gets generated under the hood.
	

	
	3
	Set the src equal to an absolute string path to the image
	

	
	4
	Set the src equal to the image itself
	

	4
	
	How can you assign a dynamic value to an HTML element attribute?
	

	ㅇ
	1
	Via the same syntax you use for dynamic values in JSX in general: Curly braces
	

	
	
	That's correct. You simply replace the text value you would normally set for attributes with the dynamic (curly-brace-wrapped) value.
	

	
	2
	Via the special React attribute directive that can be added to all built-in and custom components
	

	
	3
	Via the same syntax you use for attributes in general: You set the value as a hard-coded string
	

	
	4
	Via the special React template attribute syntax that allows you to store dynamic values for attributes
	

	5
	
	Which core React concept can increase the reusability of React components
	

	
	1
	JSX
	

	
	
	That's wrong. JSX is definitely an important concept (especially for components) but it's not increasing the reusability.

	

	
	2
	Classes
	

	
	
	That's wrong. Classes don't have anything to do with that.

	

	
	3
	Functions
	

	
	
	That's wrong. Components are indeed defined as functions but that's true for all components - no matter how reusable they may be.

	

	ㅇ
	4
	Props
	

	
	
	That's correct! Props are essentially custom attributes that can be set on components.

	

	6
	
	How do "props" work in React?
	

	
	1
	You can set props ("custom attributes") on components to automatically output them in the component's JSX code
	

	
	
	That's wrong, props can be set as described but they're not output in the JSX code automatically.

	

	ㅇ
	2
	You can set props ("custom attributes") on components to then extract & use them in the receiving component
	

	
	
	That's correct! React automatically passes a props object as the first argument to the receiving component

	

	
	3
	You can set props ("custom attributes") on components which then receive them as automatically provided constants in the function body
	

	
	4
	You can set props ("custom attributes") on components which can then call a getProps() function to extract the received values
	

	7
	
	Which of the following four code examples for setting & extracting props would NOT work as intended?
I.e., which example will NOT output the text "Priority: 5" on the screen.
	

	
	1
	That's not the right choice. This syntax might look weird (and indeed also is unnecessarily complicated) but it would work. You can use "Rest properties" to group properties that have not been "pulled out" via destructuring into a new object ("props" in this case). So the "priority" prop could be extracted from the props object as shown.

	

	
	2
	That's not the right choice. React automatically passes a "props" object as a first argument to the component function. This object contains all props ("custom attributes") as key-value pairs (i.e., as properties). So accessing "priority" on "props" will work

	

	
	3
	That's not the right choice. This example will work as React automatically passed an object with all "custom attributes" as a first argument to the component function. Object destructuring can then be used as shown in this example to "pull out" the props the component needs.

	

	ㅇ
	4
	That's the right choice. The error is subtle but this example does NOT use object destructuring. So here, the "priority" prop is not pulled out of the props object. Instead, it's now the entire props object that's named "priority". This wouldn't be a problem since the name is up to you. But it's now the entire object that's output in the paragraph, not the "priority" property. Therefore, the output would not be "Priority: 5" but instead "Priority: [Object object]" (or something like that).

	

4) 퀴즈 3
	문제
	보기
	
	

	1
	
	How should you typically store your component functions?
	

	
	1
	All in one big file.
	

	
	
	That's wrong. You can do that and if you prefer that approach, it's okay. But it's not recommended because it makes the code less maintainable.

	

	
	2
	All in one component.
	

	
	
	That's wrong. Storing components inside of other components does not just lead to maintainability issues but also to performance issues.

	

	ㅇ
	3
	Split across multiple files (one component per file)
	

	
	
	That's correct - this is the recommended approach.

	

	
	4
	Split across multiple projects
	

	2
	
	What's the purpose of the special "children" prop?
	

	ㅇ
	1
	You can use it to pass and use content between your component's opening & closing tags.
	

	
	
	That's correct. "children" will receive whichever content you pass between the opening and closing tags of your component.

	

	
	2
	You're not allowed to use it since it's used internally by React.
	

	
	3
	You can use it to use a component more than once.
	

	
	4
	You can use it to pass data to built-in components (between their opening and closing tags)
	

	3
	
	How can you handle user events in React projects?
	

	
	1
	Via the built-in onEvent prop (e.g., onEvent('click'))
	

	
	
	That's wrong, there is no such built-in prop.

	

	
	2
	Via the built-in addEventListener() method (e.g., addEventListener('click'))
	

	
	
	That's wrong. Whilst this is how you would add event listeners to elements in vanilla JavaScript, that's not how you do it in React projects.

	

	
	3
	Via the built-in on-xyz prop (e.g., on-click)
	

	
	
	That's wrong - there are no built-in props like this

	

	ㅇ
	4
	Via the built-in onXYZ props (e.g., onClick)
	

	
	
	That's correct. The built-in elements support props like onClick to allow you to define functions that should be triggered when the specified event occurs.

	

	4
	
	To execute code upon events, which value must be passed to event props like onClick?
	

	
	1
	Any expression of your choice (e.g., onClick={age = 5})
	

	
	
	That's wrong. The expression code would be executed when the element with the prop is first rendered / evaluated, NOT when the event occurs.

	

	
	2
	A string value that contains the name of the function that should be executed (e.g., onClick="handleClick")
	

	
	
	That's wrong. This code wouldn't do anything and it would especially NOT lead to the handleClick function being executed

	

	ㅇ
	3
	A pointer to the function that should be executed (e.g., onClick={handleClick})
	

	
	
	That's correct. By using this code, React is able to call handleClick() when the event occurs.

	

	
	4
	The function execution of the function that should be executed (e.g., onClick={handleClick()})
	

	5
	
	How can you "configure" the execution of an event-dependent function (e.g., define which arguments get passed to it)?
	

	
	1
	You can't
	

	
	
	That's wrong, there are ways of gaining more control.

	

	
	2
	By executing the function yourself (e.g., onClick={handleClick(5)})
	

	
	
	That's wrong - this code will lead to the handleClick() function being executed too early (when the element to which the prop is added is evaluated / rendered for the first time). The function will NOT be executed when the event occurs.

	

	
	3
	By adding an event listener via the addEventListener() method (e.g., addEventListener('click'))
	

	
	
	That's wrong, using this method in React is pretty much always wrong. It's not the "React way" of handling events. You should use the event props (onClick etc).

	

	
	4
	By wrapping the function with another function (e.g., onClick={() => handleClick(5)})
	

	
	
	That's the correct choice! By wrapping the execution of your event handling function with another function, it's that other function that's passed as a value to the event-handling prop. Therefore, your main function (=> handleClick in this example) does NOT get executed too early but instead only when the event occurs.

	

5) 퀴즈 4
	문제
	보기
	
	

	1
	
	What's the purpose of "State" in React apps?
	

	
	1
	It's data that's passed to other components
	

	
	
	That's wrong - that's the "props" concept

	

	ㅇ
	2
	It's data that, when changed, causes React to re-evaluate a component
	

	
	
	That's correct! The component to which the state belongs and its child and descendent components will be re-evaluated as state changes.

	

	
	3
	It's data that, when changed, always causes React to re-evaluate all components in the app
	

	
	4
	It's data that, when changed, can't be passed to components anymore
	

	2
	
	There are two "Rules of Hooks". Which of the following statements is NOT TRUE according to those rules?
	

	ㅇ
	1
	You must not call React Hooks next to other Hooks.
	

	
	
	That's the right choice because this statement is false - you ARE ALLOWED to call as many Hook function as needed. And they may (and often will) be positioned directly next to each other.

	

	
	2
	You must not call React Hooks outside of the component function.
	

	
	3
	You must not call React Hooks inside of if statements.
	

	
	4
	You must not call React Hooks inside of nested functions.
	

	3
	
	Will the following code work?
1. import { useState } from 'react';
2.
3. function SomeComponent() {
4. const [selected, setSelected] = useState(false);
5.
6. function handleClick() {
7. const [selected, setSelected] = useState(true);
8. }
9.
10. return <button onClick={handleClick}>Select</button>
11. }

	

	ㅇ
	1
	No
	

	
	
	That's the correct choice. This code violates the "Rules of Hooks" as it calls a Hook function inside of a nested function.

	

	
	2
	Yes
	

	
	
	Yes, if no SomeComponent is not nested into some other component
	

	4
	
	What's the idea behind "derived state" / "computed values"?
	

	
	1
	It's an older pattern that shouldn't be used anymore - use state instead.
	

	
	
	That's wrong - you absolutely should use computed values / derived state whenever possible.

	

	
	2
	Computed values are values that should be managed as separate state which is then derived from other state values.
	

	
	
	That's wrong, the idea is to NOT manage them as extra state.

	

	ㅇ
	3
	Computed values are values that shouldn't be managed as separate state since they can be derived from other state.
	

	
	
	That's correct.
	

6) 퀴즈 5
	문제
	보기
	
	

	1
	
	Which of the following code snippets WILL NOT output the content conditionally?
	

	
	1
	That's the wrong choice because this code will work. You can display content conditionally with help of the logical AND operator (&&)

	

	
	2
	That's the wrong choice because this code will work. You can display content conditionally with help of a ternary expression.

	

	
	3
	That's the wrong choice because this code will work. You can display content conditionally with help of a conditionally set variable.

	

	ㅇ
	4
	That's the right choice because this code won't work. There is no default "show" prop that could be set on built-in elements to show (or hide) them.

	

	2
	
	Which code snippet WILL WORK and output a list dynamically?
	

	
	1
	That's the wrong choice - there is no built-in list function.

	

	ㅇ
	2
	That's the right choice!

	

	
	3
	That's the wrong choice - there is no built-in transform function.

	

	
	4
	That's the wrong choice because this code will not work. You can't use a for loop inside of JSX code and output content like this.

	

	3
	
	What's the problem with this code?
1. <div>
2. {someArray.map(item => <p>{item}</p>)}
3. </div>

	

	
	1
	You can only map to , not to <p>
	

	
	
	That's wrong, you don't have to use

	

	
	2
	You can only output list data between tags, not <div>
	

	
	
	That's wrong - you can output dynamic data anywhere you want.

	

	ㅇ
	3
	You should add a key prop to the list item
	

	
	
	That's the right choice because that's the problem with this code. When dynamically outputting a list of elements, every element should receive a unique "key" to help React tell the list items apart.

	

	
	4
	You should add a list prop to the
	

	
	
	That's wrong, this answer doesn't make any sense. There is no "list" prop that could be set.

	

[bookmark: _GoBack]
