[NEW] Spring Security 6 Zero to Master along with JWT,OAUTH2
목차 (Table of Contents)
1.	대상 수강생 페이지	2
1)	수강생이 강의를 통해 무엇을 배우게 됩니까?	2
2)	강의를 수강하기 위한 요구사항 또는 필요 조건은 무엇인가요?	2
3)	이 강의는 누구를 위한 것인가요?	2
2.	강의 미리보기	2
1)	강의 제목	2
2)	강의 부제	3
3)	강의 설명	3
3.	섹션 (총14개)	4
4.	강의 (총134개)	5
5.	텍스트 강의 (2개)	12
1)	강의 18	12
2)	강의 134	13
6.	퀴즈	14
1)	퀴즈 제목	14
2)	퀴즈1	15
3)	퀴즈2	19
4)	퀴즈3	26
5)	퀴즈4	29
6)	퀴즈5	32
7)	퀴즈6	35
8)	퀴즈7	39
9)	퀴즈8	41
10)	퀴즈9	42
11)	퀴즈10	44
12)	퀴즈11	46
13)	퀴즈12	47
14)	퀴즈13	48

1. [bookmark: _Toc97555206][bookmark: _Toc150331963]대상 수강생 페이지
1) [bookmark: _Toc97555207][bookmark: _Toc150331964]수강생이 강의를 통해 무엇을 배우게 됩니까?
	Spring Security framework details and it features.
	

	How to adapt security for a Java web application using Spring Security
	

	What is CSRF, CORS, JWT, OAUTH2
	

	Applying authorization rules using roles, authorities inside a web application using Spring Security
	

	Method level security in web/non-web applications
	

2) [bookmark: _Toc97555208][bookmark: _Toc150331965]강의를 수강하기 위한 요구사항 또는 필요 조건은 무엇인가요?
	Java
	

	Basics of Spring framework
	

3) [bookmark: _Toc97555209][bookmark: _Toc150331966]이 강의는 누구를 위한 것인가요?
	Beginner students who are learning Spring framework and interested in security as well
	

	Developers who already know developing web applications using Spring framework
	

	Java Architects
	

2. [bookmark: _Toc97555210][bookmark: _Toc150331967]강의 미리보기
1) [bookmark: _Toc97555211][bookmark: _Toc150331968]강의 제목
	[NEW] Spring Security 6 Zero to Master along with JWT,OAUTH2
	

2) [bookmark: _Toc97555212][bookmark: _Toc150331969]강의 부제
	 Spring Security 6 , SpringBoot 3 Security, CORs, CSRF, JWT, OAUTH2, OpenID Connect, KeyCloak

	

3) [bookmark: _Toc97555213][bookmark: _Toc150331970]강의 설명
	 'Spring Security Zero to Master' course will help in understanding the Spring Security Architecture, important packages, interfaces, classes inside it which handles authentication and authorization requests in the web applications. It also covers most common security related topics like CORs, CSRF, JWT, OAUTH2, password management, method level security, user, roles & authorities management inside web applications.
Below are the important topics that this course covers,
1. Spring Security framework details and it features
2. How to adapt security for a Java web application using Spring Security
3. Password Management in Spring Security with PasswordEncoders
4. Deep dive about encoding, encryption and hashing
5. What is CSRF, CORS and how to address them
6. What is Authentication and Authorization. How they are different from each other.
7. Securing endpoint URLs inside web applications using Ant, MVC & Regex Matchers
8. Filters in Spring Security and how to write own custom filters
9. Deep dive about JWT (JSON Web Tokens) and the role of them inside Authentication & Authorization
10. Deep dive about OAUTH2 and various grant type flows inside OAUTH2.
11. Deep dive about OpenID Connect & how it is related to OAUTH2
12. Applying authorization rules using roles, authorities inside a web application using Spring Security
13. Method level security in web/non-web applications
14. Social Login integrations into web applications
15. Set up of Authorization Server using KeyCloak

The pre-requisite for the course is basic knowledge of Java, Spring and interest to learn.

	

3. [bookmark: _Toc97555214][bookmark: _Toc150331971]섹션 (총14개)
	1
	Getting Started
	

	2
	Changing the default security configurations
	

	3
	Defining & Managing Users
	

	4
	Password Management with PasswordEncoders
	

	5
	Understanding Authentication Provider and Implementing it
	

	6
	Understanding CORs & CSRF
	

	7
	Understanding & Implementing Authorization
	

	8
	Writing our own Custom Filters in Spring Security
	

	9
	Token based Authentication using JSON Web Token (JWT)
	

	10
	Method Level Security
	

	11
	Deep dive of OAUTH2 & OpenID Connect
	

	12
	Implementing OAUTH2 using spring security
	

	13
	Implementing OAUTH2 style login inside EazyBank using KeyCloak
	

	14
	Thank You and Congratulations
	

4. [bookmark: _Toc97555215][bookmark: _Toc150331972]강의 (총134개)
	1
	Course Introduction
	

	2
	Details of Source Code, PDF Content & other instructions for the course
	

	3
	What is Security & Why it is important
	

	4
	Creating a simple Spring Boot app with out security
	

	5
	Securing Spring Boot basic app using Spring Security
	

	6
	Configure static credentials inside application properties file
	

	7
	Why should we use Spring Security framework
	

	8
	Quick introduction to Servlets & Filters
	

	9
	Introduction to Spring Security Internal flow
	

	10
	Demo of Spring Security internal flow
	

	11
	Sequence flow of the Spring Security default behaviour
	

	12
	Understanding on how multiple requests work with out credentials
	

	13
	Understanding about UI part of the EazyBank application
	

	14
	Backend REST services required for EazyBank app
	

	15
	Creating backend services needed for the EazyBank application - Part 1
	

	16
	Creating backend services needed for the EazyBank application - Part 2
	

	17
	Checking the default configuration inside the spring security framework
	

	18
	IMPORTANT NOTE
	

	19
	Modifying the code as per our custom requirements
	

	20
	Denying all the requests
	

	21
	Permit all the requests
	

	22
	Introduction to the agenda of the section
	

	23
	Configuring users using InMemoryUserDetailsManager - Approach 1
	

	24
	Configuring users using InMemoryUserDetailsManager - Approach 2
	

	25
	Understanding User Management interfaces and Classes
	

	26
	Deep Dive of UserDetails Interface & User class
	

	27
	Deep Dive of UserDetailsService & UserDetailsManager Interfaces
	

	28
	Deep Dive of UserDetailsManager Implementation classes
	

	29
	Creating MySQL Database in the cloud
	

	30
	Connecting to DB & Creating Users inside the DB as per JdbcUserDetailsManager
	

	31
	Using JdbcUserDetailsManager to perform authentication
	

	32
	Creating our own custom tables for Authentication
	

	33
	Creating JPA Entity and repository classes for new table
	

	34
	Creating our own custom implementation of UserDetailsService
	

	35
	Building a new REST API to allow the registration of new User
	

	36
	How our passwords validated in Spring Security by default
	

	37
	Encoding Vs Encryption Vs Hashing - Part 1
	

	38
	Encoding Vs Encryption Vs Hashing - Part 2
	

	39
	How Our passwords will be validated with hashing & PasswordEncoders
	

	40
	Deep dive of PasswordEncoder interface
	

	41
	Deep dive of PasswordEncoder implementation classes - Part 1
	

	42
	Deep dive of PasswordEncoder implementation classes - Part 2
	

	43
	Demo of registration of new user with Bcrypt password encoder
	

	44
	Demo of login with Bcrypt password encoder
	

	45
	Why should we consider creating our own AuthenticationProvider
	

	46
	Understanding AuthenticationProvider methods
	

	47
	Implementing and Customising the AuthenticationProvider inside our application
	

	48
	Testing our custom AuthenticationProvider implementation
	

	49
	Spring Security Sequence flow with custom AuthenticationProvider
	

	50
	Setting up the EazyBank UI project
	

	51
	Understanding the UI project and walkthrough of the Angular code
	

	52
	Creating new DB schema for EazyBank scenarios
	

	53
	Updating Backend project based on the latest DB schema
	

	54
	Testing registration of the new user with latest changes
	

	55
	Taste of CORs error
	

	56
	Introduction to CORs
	

	57
	Possible options to fix the CORs issue
	

	58
	Fixing CORs issue using Spring Security
	

	59
	Demo of default CSRF protection inside Spring Security
	

	60
	Introduction to CSRF attack
	

	61
	Solution to handle CSRF attacks
	

	62
	Ignoring CSRF protection for public APIs
	

	63
	Implementing CSRF token solution inside our web application
	

	64
	Testing the CSRF related changes
	

	65
	Authentication Vs Authorization
	

	66
	How Authorities stored inside Spring Security
	

	67
	Creating new table authorities to store multiple roles or authorities
	

	68
	Making backend changes to load authorities from new DB table
	

	69
	Configuring Authorities inside web application using Spring Security-Theory
	

	70
	Configuring Authorities inside web application using Spring Security - Coding
	

	71
	Authority Vs Role in Spring Security
	

	72
	Configuring Roles Authorization inside web app using Spring Security-Theory
	

	73
	Configuring Roles Authorization inside web app using Spring Security-Coding
	

	74
	Introduction to Filters in Spring Security and the sample use cases
	

	75
	Demo of Inbuilt Filters of Spring Security framework
	

	76
	How to create our own custom filter
	

	77
	Adding a custom filter using addFilterBefore() method
	

	78
	Adding a custom filter using addFilterAfter() method
	

	79
	Adding a custom filter using addFilterAt() method
	

	80
	Details about GenericFilterBean and OncePerRequestFilter
	

	81
	Demo of JSESSIONID and issues with it
	

	82
	Advantages of Token based Authentication
	

	83
	Deep dive about JWT Tokens - Part 1
	

	84
	Deep dive about JWT Tokens - Part 2
	

	85
	Making project configuration to use JWT tokens
	

	86
	Configuring filters to generate the JWT tokens
	

	87
	Configuring filters to validate JWT tokens
	

	88
	Making changes on the client side for JWT token based authentication
	

	89
	Validating the JWT changes made by running the applications
	

	90
	Validating the JWT token expiration scenario
	

	91
	Introduction to method level security in Spring Security
	

	92
	Details about method invocation authorization in method level security
	

	93
	Demo of method level security using @PreAuthorize
	

	94
	Demo of method level security using @PostAuthorize
	

	95
	Details about filtering authorization in method level security
	

	96
	Demo of @PreFilter annotation
	

	97
	Demo of @PostFilter annotation
	

	98
	Problems that OAUTH2 trying to solve
	

	99
	Introduction to OAUTH2
	

	100
	OAuth2 terminologies or jargons
	

	101
	OAuth2 Sample flow - Theory
	

	102
	Demo of OAuth2 Sample flow
	

	103
	Deep dive on Authorization code grant type flow in OAUTH2
	

	104
	Demo of Authorization code grant type flow in OAUTH2
	

	105
	Deep dive & Demo of implicit grant flow in OAUTH2
	

	106
	Deep dive of password grant type flow in OAUTH2
	

	107
	Deep dive of client credentials grant type flow in OAUTH2
	

	108
	Deep dive of refresh token grant type flow in OAUTH2
	

	109
	How resource server validates the tokens issued by Auth server
	

	110
	Introduction to OpenID Connect
	

	111
	Registering the client details with the GitHub to use it's OAUTH2 Auth server
	

	112
	Building a springboot application that uses GitHub Auth server during OAuth2
	

	113
	Running and verifying the sample application using GitHub OAUTH2
	

	114
	Introduction to OAUTH2 flow inside EazyBank web App
	

	115
	Introduction to KeyCloak Auth Server
	

	116
	Installation of KeyCloak server & setup admin account
	

	117
	Setup a Realm inside KeyCloak Server for EazyBank App
	

	118
	Creating Client Credentials inside KeyCloak for API-API secured invocations
	

	119
	Setup of EazyBank Resource Server
	

	120
	Getting Access token from KeyCloak using client credentials grant type
	

	121
	Passing Access token to Resource server for response through Postman
	

	122
	Understanding Authorization code grant type for EazyBank App
	

	123
	Creating Client and User details inside KeyCloak for Auth code grant flow
	

	124
	Testing Authorization code grant type using Postman App
	

	125
	Deep dive on Authorization code grant type with PKCE
	

	126
	Demo of Authorization code grant type with PKCE
	

	127
	Creating public facing client details inside KeyCloak server
	

	128
	Implementing PKCE Authorization code grant type inside Angular UI App - Part 1
	

	129
	Implementing PKCE Authorization code grant type inside Angular UI App - Part 2
	

	130
	Testing PKCE flow inside Eazy Bank application
	

	131
	Important features of KeyCloak
	

	132
	Social Login integration with the help of KeyCloak Server
	

	133
	Thank You and Congratulations
	

	134
	Bonus lectures
	

5. [bookmark: _Toc97555216][bookmark: _Toc150331973]텍스트 강의 (2개)
1) [bookmark: _Toc97555217][bookmark: _Toc150331974]강의 18
	 👉 IMPORTANT NOTE
Starting from Spring Security 6.1 and Spring Boot 3.1.0 versions, the Spring Security framework team recommends using the Lambda DSL style for configuring security for APIs, web paths, etc. Consequently, they have deprecated a few methods within the framework. These deprecated methods are planned to be removed in Spring Security 7, which is expected to be released in the next 2-3 years. This timeframe allows all developers sufficient time for migrating their code.
However, there's no need to worry as this change does not alter the underlying concepts, . Instead of using normal Java configurations, we will now employ the Lambda DSL. Below, you will find an example code snippet illustrating the differences between the two styles:
With out Lambda DSL
[image:]
With Lambda DSL
[image:]
Please note that the course is recorded using Spring Boot 3 and Spring Security 6 versions, where normal Java style configurations are used instead of Lambda DSL. Therefore, I encourage you to follow the videos to understand the concepts, methods, configurations, etc., and try to use Lambda DSL style configurations.
For your reference, I have updated the code in the GitHub repository to use the Lambda DSL style. You should be able to comprehend the Lambda DSL style, but if you have any questions, please feel free to reach out to me.
The Lambda DSL was created to accomplish to following goals:
· Automatic indentation makes the configuration more readable.
· The is no need to chain configuration options using .and()
· The Spring Security DSL has a similar configuration style to other Spring DSLs such as Spring Integration and Spring Cloud Gateway.
Please refer to the following link for the official note regarding this change from the Spring Security team:
https://docs.spring.io/spring-security/reference/migration-7/configuration.html

Thank a ton. Let's have fun & learn together.
Madan

	

2) [bookmark: _Toc97555218][bookmark: _Toc150331975]강의 134
	 Explore the additional courses offered by Eazy Bytes that might catch your interest. Simply click on the corresponding image to know more information about each course. Thanks a ton once again for selecting Eazy Bytes as your trusted learning companion.
Master Spring framework, Spring Boot, REST, JPA, Hibernate
[image: Master Spring framework, Spring Boot, REST, JPA, Hibernate]
Master Microservices with Spring, Docker, Kubernetes
[image: Master Microservices with Java, Spring, Docker, Kubernetes]
Java 7 & Java 8 new features with Lambdas & Streams
[image: Java 7 & Java 8 new features with Lambdas & Streams]
YAML Zero to Master
[image: YAML Zero to Master]
OpenAPI Specification & Swagger Tools - Zero To Master
[image: OpenAPI Specification & Swagger Tools - Zero To Master]
Google Cloud Digital Leader Certification - For GCP Beginner
[image: Google Cloud Digital Leader Certification - For GCP Beginner]
	

6. [bookmark: _Toc150331976]퀴즈
1) [bookmark: _Toc150331977]퀴즈 제목
	퀴즈
	
	

	1
	"Getting started with Spring Security" quiz
	

	2
	Quiz related to "Understanding & Changing the default security configurations"
	

	3
	Quiz on "Defining & Managing Users" in Spring Security
	

	4
	Quiz related to Password Management in Spring Security
	

	5
	Quiz related to AuthenticationProvider in Spring Security
	

	6
	Quiz related to CORs & CSRF
	

	7
	Quiz related to Authentication & Authorization
	

	8
	Quiz related to Filters in Spring Security
	

	9
	Quiz related to "Token based Authentication using JWT" in Spring Security
	

	10
	Quiz related to Method level security in Spring Security
	

	11
	Quiz related to OAUTH2
	

	12
	Quiz related to OAUTH2 integration with Spring Security
	

	13
	Quiz related to OAUTH2 setup using KeyCloak Server
	

2) [bookmark: _Toc150331978] 퀴즈1
	문제
	보기
	7
	

	1
	
	Security related requirements for an application is mentioned inside ?
	

	ㅇ
	1
	Functional requirements
	

	
	
	Please note that functional requirements will have business requirements defined but not the security.
	

	
	2
	Non-functional requirements
	

	
	
	You are correct. Non-functional requirements will have requirements defined around Security, Performance, Scalability, Availability etc.
	

	1
	
	Which of the following statement is TRUE ?

	

	
	1
	The only objective of implementing Security inside a web application is to protect it's data.
	

	
	
	Please note that motivation to implement Security inside a web application is not only to protect it's data but also it's business logic & save it from the security breaches, attacks etc.
	

	ㅇ
	2
	The objectives of implementing Security inside a web application is to protect it's data, business logic and save it from security breaches, attacks etc.
	

	
	
	You are correct. The motivation to implement Security inside a web application is to protect it's data, business logic & save it from the security breaches, attacks etc.
	

	3
	
	Which of the following is the best practice during Application Development in terms of implementing Security?
	

	ㅇ
	1
	Considering Security right from development phase itself along with business logic.
	

	
	
	You are correct. Security should be considered right from development phase itself along with business logic. So that there is no re-work.
	

	
	2
	Considering Security from testing phase like UAT.
	

	
	
	Please note that Security should be considered right from development phase itself along with business logic. So that there is no re-work.
	

	
	3
	Considering Security after a Security attack or breach happens.
	

	
	
	Please note that Security should be considered right from development phase itself along with business logic. So that there is no re-work.
	

	4
	
	Which of the following is the correct Spring Boot starter project that we need to add to implement security inside a SpringBoot project?
	

	
	1
	spring-boot-starter-web
	

	
	
	Please note that 'spring-boot-starter-web' is used to build web, including RESTful, applications using Spring MVC. For Security, we need to add 'spring-boot-starter-security' into our application maven configurations.
	

	ㅇ
	2
	spring-boot-starter-security
	

	
	
	You are correct. For Security, we need to add 'spring-boot-starter-security' into our application maven configurations.
	

	
	3
	spring-boot-security
	

	
	
	Please note that for Security, we need to add 'spring-boot-starter-security' into our application maven configurations.
	

	5
	
	What is the default cookie that gets generated by Spring Security framework when login attempt happens which will helps us to make multiple requests with out credentials each time?
	

	ㅇ
	1
	JSESSIONID
	

	
	
	You are correct. By default Spring Security generates JSESSIONID cookie during authentication process.
	

	
	2
	AUTHID
	

	
	
	Please note that by default Spring Security generates JSESSIONID cookie during authentication process.
	

	
	3
	SESSIONID
	

	
	
	Please note that by default Spring Security generates JSESSIONID cookie during authentication process.
	

	6
	
	The interface which we need to implement to define the logic on how a user should be authenticated inside Spring Security framework is?
	

	ㅇ
	1
	org.springframework.security.authentication.AuthenticationProvider
	

	
	
	You are correct. AuthenticationProvider is the interface which we need to implement to define the logic on how a user should be authenticated.
	

	
	2
	org.springframework.security.core.context.SecurityContext
	

	
	
	Please note that AuthenticationProvider is the interface which we need to implement to define the logic on how a user should be authenticated.
	

	
	3
	org.springframework.security.crypto.password.PasswordEncoder
	

	
	
	Please note that AuthenticationProvider is the interface which we need to implement to define the logic on how a user should be authenticated.
	

	7
	
	Which of the following Spring Security filter extracts the username, password of the enduser and attempts Authentication ?
	

	
	1
	AuthorizationFilter
	

	ㅇ
	2
	UsernamePasswordAuthenticationFilter
	

	
	3
	DefaultLoginPageGeneratingFilter
	

3) [bookmark: _Toc150331979] 퀴즈2
	문제
	보기
	6
	

	1
	
	What is the bean that we need to create to define our custom security requirements inside a web application ?
	

	
	1
	SecurityChain
	

	ㅇ
	2
	SecurityFilterChain
	

	2
	
	Which of the following is the correct code to create the bean of SecurityFilterChain to define custom security configurations ?
	

	
	1
	@Bean
SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {

}

	

	
	2
	@Bean
SecurityFilterChain defaultSecurityFilterChain() throws Exception {

}

	

	
	3
	SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {

}

	

	3
	
	Which of the following is the default behaviour or configurations that Spring Security follows for our application endpoints?

	

	
	1
	Denying all the requests regardless of authentication pass or fail by using the below configuration
@Bean
SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {
 http.authorizeHttpRequests().anyRequest().denyAll();
 http.formLogin();
 http.httpBasic();
 return http.build();
}

	

	
	2
	Permitting all the requests regardless of authentication pass or fail by using the below configuration

@Bean
SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {
 http.authorizeHttpRequests().anyRequest().permitAll();
 http.formLogin();
 http.httpBasic();
 return http.build();
}	

	

	ㅇ
	3
	Securing all the endpoints in the application so that only authenticated users will be allowed to invoke the URLs with the below configuration

@Bean
SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {
 http.authorizeHttpRequests().anyRequest().authenticated();
 http.formLogin();
 http.httpBasic();
 return http.build();
}

	

	4
	
	If I have a below requirement to secure my application endpoints, which of the following configuration is correct?
"/dashboard" - Secured
"/myProfile" - Secured
"/home" - Not Secured

	

	ㅇ
	1
	@Configuration
public class ProjectSecurityConfig {

 @Bean
 SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http)
 throws Exception
 {
	http.authorizeHttpRequests()
 .requestMatchers("/dashboard").authenticated()
	 .requestMatchers("/myProfile").authenticated()
	 .requestMatchers("/home").permitAll()
	 .and().formLogin().and().httpBasic();
 return http.build();
 }
}

	

	
	2
	@Configuration
public class ProjectSecurityConfig {

 @Bean
 SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http)
 throws Exception
 {
	http.authorizeHttpRequests()
 .requestMatchers("/dashboard").authenticated()
 .requestMatchers("/myProfile").authenticated()
 .requestMatchers("/home").notAuthenticated()
 .and().formLogin().and().httpBasic();
 return http.build();
 }
}

	

	
	3
	@Configuration
public class ProjectSecurityConfig {

 @Bean
 SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http)
 throws Exception
 {
	http.authorizeHttpRequests()
 .requestMatchers("/dashboard").restricted()
	 .requestMatchers("/myProfile").restricted()
	 .requestMatchers("/home").permitAll()
	 .and().formLogin().and().httpBasic();
 return http.build();
 }
}

	

	5
	
	Which of the following configuration is correct to not allow anyone accessing the endpoints regardless of successfully authenticated or not?

	

	
	1
	@Configuration
public class ProjectSecurityConfig {

 @Bean
 SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http)
 throws Exception {
 http.authorizeHttpRequests().anyRequest().restrictAll();
 http.formLogin();
 http.httpBasic();
 return http.build();
 }
}

	

	
	2
	@Configuration
public class ProjectSecurityConfig {

 @Bean
 SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http)
 throws Exception {
 http.authorizeHttpRequests().anyRequest().deniedAll();
 http.formLogin();
 http.httpBasic();
 return http.build();
 }
}

	

	ㅇ
	3
	@Configuration
public class ProjectSecurityConfig {

 @Bean
 SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http)
 throws Exception {
 http.authorizeHttpRequests().anyRequest().denyAll();
 http.formLogin();
 http.httpBasic();
 return http.build();
 }
}

	

	6
	
	Which of the following configuration is correct to allow anyone accessing the endpoints regardless of successfully authenticated or not?

	

	
	
	@Configuration
public class ProjectSecurityConfig {

 @Bean
 SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http)
 throws Exception {
 http.authorizeHttpRequests().anyRequest().allowAll();
 http.formLogin();
 http.httpBasic();
 return http.build();
 }
}

	

	ㅇ
	2
	@Configuration
public class ProjectSecurityConfig {

 @Bean
 SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http)
 throws Exception {
 http.authorizeHttpRequests().anyRequest().permitAll();
 http.formLogin();
 http.httpBasic();
 return http.build();
 }
}

	

	
	3
	@Configuration
public class ProjectSecurityConfig {

 @Bean
 SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http)
 throws Exception {
 http.authorizeHttpRequests().anyRequest().grantAll();
 http.formLogin();
 http.httpBasic();
 return http.build();
 }
}

	

4) [bookmark: _Toc150331980] 퀴즈3
	문제
	보기
	6
	

	1
	
	Which of the following is a valid code to create and configure users inside Spring Security using In-Memory?

	

	ㅇ
	1
	@Bean
public InMemoryUserDetailsManager userDetailsService() {
 UserDetails admin = User.withDefaultPasswordEncoder()
 .username("admin")
 .password("12345")
 .authorities("admin")
 .build();
 UserDetails user = User.withDefaultPasswordEncoder()
 .username("user")
 .password("12345")
 .authorities("read")
 .build();
 return new InMemoryUserDetailsManager(admin, user);
}

	

	
	2
	@Bean
public InMemoryUserDetailsManager userDetailsService() {
 UserDetails admin = User.withDefaultPasswordEncoder()
 .username("admin")
 .password("12345")
 .authorities("admin")
 .build();
 UserDetails user = User.withDefaultPasswordEncoder()
 .username("user")
 .password("12345")
 .authorities("read")
 .build();
 return new InMemoryUserDetailsManager();
}

	

	2
	
	Which of the following interface represents core user information inside Spring Security framework?

	

	
	1
	org.springframework.security.core.userdetails.UserDetailsService

	

	
	2
	org.springframework.security.provisioning.UserDetailsManager

	

	ㅇ
	3
	org.springframework.security.core.userdetails.UserDetails

	

	3
	
	Which of the following statement is true regarding UserDetailsService interface?

	

	ㅇ
	1
	UserDetailsService has a single method loadUserByUsername(String username) with a return type UserDetails. This interface is idle in the scenarios where we only want to load user-specific data but not update/create/delete it.

	

	
	2
	UserDetailsService has multiple methods that supports load/create/update/delete user details.
	

	4
	
	Which of the following statement is true regarding User class present inside Spring Security framework?

	

	
	1
	User class has methods that can help to load/create/update/delete the user related data inside Spring Security framework

	

	ㅇ
	2
	User is a sample implementation class of UserDetails interface provided by Spring Security team. The object of User class helps to hold the details of the end user.

	

	5
	
	Inside an application, if we have a requirement to allow create, delete, update, select, change password etc. then which of the following interface we need to implement ?

	

	
	1
	org.springframework.security.core.userdetails.UserDetailsService

	

	
	2
	org.springframework.security.core.userdetails.UserDetails

	

	ㅇ
	3
	org.springframework.security.provisioning.UserDetailsManager

	

	6
	
	Which of the following is not a Spring Security team provided implementation of UserDetailsManager?
	

	
	1
	InMemoryUserDetailsManager
	

	
	2
	JdbcUserDetailsManager
	

	ㅇ
	3
	NoSQLUserDetailsManager
	

	
	4
	LdapUserDetailsManager
	

5) [bookmark: _Toc150331981] 퀴즈4
	문제
	보기
	10
	

	1
	
	Which of the following is defined as the process of converting data from one form to another with out any secret involved and has nothing to do with cryptography ?
	

	
	1
	Encryption
	

	ㅇ
	2
	Encoding
	

	
	3
	Hashing
	

	2
	
	Which of the following statement related to Encoding is TRUE ?
	

	
	1
	Encoding uses cryptography techniques to encode the data
	

	
	2
	Once encoding, it is impossible to derive the original text using decoding.
	

	ㅇ
	3
	Encoding guarantees none of the 3 cryptographic properties of confidentiality, integrity, and authenticity because it involves no secret and is completely reversible.
	

	3
	
	Which of the following statements regarding Encryption is TRUE?
	

	ㅇ
	1
	Encryption is defined as the process of transforming data in such a way that guarantees confidentiality. To achieve that, encryption requires the use of a secret which, in cryptographic terms, we call a “key”.
	

	
	2
	It is very easy to decrypt an encrypted data even if we don't have the secret key.
	

	
	3
	Encoding is better technique than Encryption.
	

	4
	
	Which of the following statements about Hashing is correct ?
	

	
	1
	Hashing is the most weakest technique compared to Encryption and Encoding.
	

	ㅇ
	2
	Data once hashed using hashing technique is non-reversible.
	

	
	3
	Hashing is not a suitable technique for password management inside web applications.
	

	5
	
	Which of the following technique is recommended while handling passwords inside web applications?
	

	
	1
	Encoding
	

	ㅇ
	2
	Hashing
	

	
	3
	Encryption
	

	6
	
	What is the interface provided by Spring Security to support password encoding ?

	

	ㅇ
	1
	org.springframework.security.crypto.password.PasswordEncoder

	

	
	2
	org.springframework.security.crypto.password.PasswordConverter

	

	
	3
	org.springframework.security.crypto.password.PasswordDetails

	

	7
	
	Which of the following PasswordEncoder implementations can be considered for testing, when working with plain text passwords may be preferred?

	

	
	1
	org.springframework.security.crypto.password.StandardPasswordEncoder

	

	
	2
	org.springframework.security.crypto.password.BCryptPasswordEncoder

	

	ㅇ
	3
	org.springframework.security.crypto.password.NoOpPasswordEncoder

	

	8
	
	Which of the following PasswordEncoders is recommended for production usage?
	

	ㅇ
	1
	org.springframework.security.crypto.password.BCryptPasswordEncoder
	

	
	2
	org.springframework.security.crypto.password.StandardPasswordEncoder
	

	
	3
	org.springframework.security.crypto.password.NoOpPasswordEncoder
	

	9
	
	Which of the following methods inside BCrypt class used to generate hash value of a plain text password?
	

	
	1
	BCrypt.hashpassword()
	

	
	2
	BCrypt.convertpw()
	

	ㅇ
	3
	BCrypt.hashpw()
	

	10
	
	Which of the following methods inside BCrypt class used to check a plaintext password matches a previously hashed value ?
	

	
	1
	BCrypt.validatepw()
	

	ㅇ
	2
	BCrypt.checkpw()
	

	
	3
	BCrypt.checkpassword()
	

6) [bookmark: _Toc150331982]퀴즈5
	문제
	보기
	4
	

	1
	
	If we have a custom authentication requirement that is not fulfilled by Spring Security framework then we can build our own authentication logic by implementing the below interface ?
	

	
	1
	org.springframework.security.core.userdetails.UserDetailsService
	

	
	2
	org.springframework.security.provisioning.UserDetailsManager
	

	ㅇ
	3
	org.springframework.security.authentication.AuthenticationProvider
	

	2
	
	Which of the following is the correct definition of AuthenticationProvider interface ?

	

	
	1
	public interface AuthenticationProvider {

	Authentication authenticate(Authentication authentication)
			throws AuthenticationException;
	
}

	

	ㅇ
	2
	public interface AuthenticationProvider {

	Authentication authenticate(Authentication authentication)
			throws AuthenticationException;

	boolean supports(Class<?> authentication);
	
}

	

	
	3
	public interface AuthenticationProvider {

	Authentication authenticate()
			throws AuthenticationException;

 boolean supports(Class<?> authentication);
	
}

	

	4
	
	public interface AuthenticationProvider {

 boolean supports(Class<?> authentication);
	
}

	

	3
	
	Which of the following interface represents the authenticated user once the request has been processed by the AuthenticationProvider.authenticate() method inside Spring Security framework?
	

	
	1
	org.springframework.security.authentication.AuthenticationProvider
	

	ㅇ
	2
	org.springframework.security.core.Authentication
	

	
	3
	java.security.Principal
	

	4
	
	Which of the following interface is true regarding Authentication interface inside Spring Security?
	

	ㅇ
	1
	Authentication interface extends Principal interface from Java.
	

	
	2
	Authentication interface extends UserDetails interface.
	

	
	3
	Authentication and UserDetails interfaces are same and there is no specific conversion needed between them.
	

7) [bookmark: _Toc150331983] 퀴즈6
	문제
	보기
	6
	

	1
	
	Which of the following is a mechanism that allows a server to indicate any origins (domain, scheme, or port) other than its own from which a browser should permit loading of resources?
	

	
	1
	CROSS-SITE REQUEST FORGERY (CSRF)
	

	ㅇ
	2
	Cross Site Scripting (XSS)
	

	
	3
	Cross-Origin Resource Sharing (CORS)
	

	2
	
	Which of the following parameters are considered to identify "other origins" as part of CORs policy?
	

	
	1
	Only Domain name
	

	
	2
	Only Port Number
	

	ㅇ
	3
	Domain & Port & scheme (HTTPS/HTTP)
	

	
	4
	Only Scheme (HTTPS/HTTP)
	

	3
	
	If you have a scenario where a front end application try to communicate with a backend application which is deployed in a different domain/port, how to resolve CORs issue that will arise in these kind of scenarios?
	

	
	1
	Disable the CORs completely
	

	ㅇ
	2
	Backend server can be configured to allow cross-origin resource sharing by including some special headers like Access-Control-Allow-Origin, Access-Control-Allow-Methods etc. Web browsers can use these headers to determine whether a request should continue or fail.
	

	
	3
	Having a communication between a UI and backend applications which are deployed in separate domain/port is not possible. So change the architecture and deploy both front end and backend in the same server & port.
	

	4
	
	Which of the following explains CROSS-SITE REQUEST FORGERY(CSRF) issue correctly?
	

	ㅇ
	1
	A typical Cross-Site Request Forgery (CSRF or XSRF) attack aims to perform an operation in a web application on behalf of a user without their explicit consent. In general, it doesn't directly steal the user's identity, but it exploits the user to carry out an action without their will.
	

	
	2
	A typical Cross-Site Request Forgery (CSRF or XSRF) attack aims to perform an operation in a web application on behalf of a user with their explicit consent.
	

	
	3
	CSRF is a type of attack in which malicious scripts are injected into websites and web applications for the purpose of running on the end user's device.
	

	5
	
	Which of the following is a valid approach to handle the CSRF issues inside a web application?

	

	ㅇ
	1
	@Bean
SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {
 CsrfTokenRequestAttributeHandler requestHandler = new CsrfTokenRequestAttributeHandler();
 requestHandler.setCsrfRequestAttributeName("_csrf");

 http.csrf((csrf) -> csrf.csrfTokenRequestHandler(requestHandler).ignoringRequestMatchers("/contact", "/register")
 .csrfTokenRepository(CookieCsrfTokenRepository.withHttpOnlyFalse()))
 .addFilterAfter(new CsrfCookieFilter(), BasicAuthenticationFilter.class)
 .authorizeHttpRequests()..........
 return http.build();
}

	

	
	2
	@Bean
SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {

 http.csrf().disable()
 .authorizeHttpRequests()..........
 return http.build();
}

	

	6
	
	Which of the following is a valid code configuration to allow CORS inside a web application using Spring Security?

	

	
	1
	http.cors().configurationSource(new CorsConfigurationSource() {
 @Override
 public CorsConfiguration getCorsConfiguration(HttpServletRequest request) {
 CorsConfiguration config = new CorsConfiguration();
 return config;
 }
 })

	

	ㅇ
	2
	http.cors().configurationSource(new CorsConfigurationSource() {
 @Override
 public CorsConfiguration getCorsConfiguration(HttpServletRequest request) {
 CorsConfiguration config = new CorsConfiguration();
 config.setAllowedOrigins(Collections.singletonList("http://localhost:4200"));
 config.setAllowedMethods(Collections.singletonList("*"));
 config.setAllowCredentials(true);
 config.setAllowedHeaders(Collections.singletonList("*"));
 config.setMaxAge(3600L);
 return config;
 }
 })

	

8) [bookmark: _Toc150331984] 퀴즈7
	문제
	보기
	7
	

	1
	
	Which of the following best describes Authorization in any web application?
	

	
	1
	During Authorization, the identity of users are checked for providing the access to the system.
	

	ㅇ
	2
	During Authorization, the person’s or user’s authorities are checked for accessing the resources.
	

	
	3
	During Authorization, the complexity of the password will be validated.
	

	2
	
	Which of the following best describes Authentication in any web application?
	

	ㅇ
	1
	During Authentication, the identity of users are checked for providing the access to the system.
	

	
	2
	During Authentication, the person’s or user’s authorities are checked for accessing the resources.
	

	
	3
	During Authentication, the complexity of the password will be validated.
	

	3
	
	Which of the following is the correct combination of HTTP error codes for Authentication and Authorization failure scenarios?
	

	
	1
	Authentication : 401
Authorization : 404
	

	
	2
	Authentication : 403
Authorization : 401
	

	
	3
	Authentication : 500
Authorization : 403
	

	ㅇ
	4
	Authentication : 401
Authorization : 403
	

	4
	
	Inside UserDetails interface which is a contract of the user inside the Spring Security, the authorities of an user stored in the form of collection of which interface?
	

	ㅇ
	1
	org.springframework.security.core.GrantedAuthority
	

	
	2
	org.springframework.security.core.Authentication
	

	
	3
	org.springframework.security.core.userdetails.User
	

	5
	
	Which of the following methods can be used to configure authorities for a specific URL?
	

	
	1
	hasAuthority()
	

	
	2
	hasAnyAuthority()
	

	
	3
	access()
	

	ㅇ
	4
	All of the above
	

	6
	
	Which of the following is the correct statement regarding Authority inside Spring Security?
	

	ㅇ
	1
	Authority is like an individual privilege and represents fine-grained access like VIEWACCOUNTS, VIEWLOANS etc.
	

	
	2
	Authority is a group of privileges and represents coarse-grained access like ROLE_ADMIN, ROLE_USER.
	

	
	3
	Both Authority and Role are same in Spring Security.
	

	7
	
	Which of the following methods can be used to configure roles based access for a specific URL inside Spring Security ?

	

	
	1
	hasRole()
	

	
	2
	hasAnyRole()
	

	
	3
	access()
	

	ㅇ
	4
	All of the above
	

9) [bookmark: _Toc150331985] 퀴즈8
	문제
	보기
	4
	

	1
	
	In order to create our own custom filters in Spring Security, we need to implement the following interface ?
	

	
	1
	jakarta.servlet.FilterConfig
	

	ㅇ
	2
	jakarta.servlet.Filter
	

	
	3
	jakarta.servlet.ServletContext
	

	2
	
	If we have a scenario to define a custom filter with the name 'RequestValidationBeforeFilter' and run it before a specified filter 'BasicAuthenticationFilter' as part of Spring Security authentication and authorization, then which of the below code is correct configuration ?
	

	
	1
	addFilter(new RequestValidationBeforeFilter(), BasicAuthenticationFilter.class)
	

	
	2
	addFilterBelow(new RequestValidationBeforeFilter(), BasicAuthenticationFilter.class)
	

	ㅇ
	3
	addFilterBefore(new RequestValidationBeforeFilter(), BasicAuthenticationFilter.class)
	

	3
	
	If we have a scenario to define a custom filter with the name 'JWTTokenGeneratorFilter' and run it after a specified filter 'BasicAuthenticationFilter' as part of Spring Security authentication and authorization, then which of the below code is correct configuration ?
	

	ㅇ
	1
	addFilterAfter(new JWTTokenGeneratorFilter(), BasicAuthenticationFilter.class)
	

	
	2
	addFilter(new JWTTokenGeneratorFilter(), BasicAuthenticationFilter.class)
	

	
	3
	addFilterNext(new JWTTokenGeneratorFilter(), BasicAuthenticationFilter.class)
	

	4
	
	If we have a scenario where we need to make sure to execute our custom filter only a single execution per request dispatch then which of the following filter needs to be extended inside our custom filter ?
	

	ㅇ
	1
	org.springframework.web.filter.OncePerRequestFilter
	

	
	2
	org.springframework.web.filter.GenericFilterBean
	

	
	3
	jakarta.servlet.Filter
	

10) [bookmark: _Toc150331986]퀴즈9
	문제
	보기
	5
	

	1
	
	Which of the following statement is TRUE regarding token based authentication?
	

	
	1
	Tokens can't be invalidated during any suspicious activities without invalidating the user credentials.
	

	
	2
	Tokens can't be used to store the user related information like roles/authorities etc.
	

	ㅇ
	3
	Token helps us not to share the credentials for every request which is a security risk to make credentials send over the network frequently.
	

	2
	
	Which of the following statements is FALSE regarding JWT tokens?
	

	
	1
	JWT means JSON Web Token.
	

	
	2
	JWT tokens can be used both in the scenarios of Authorization/Authentication along with Information exchange which means you can share certain user related data in the token itself which will reduce the burden of maintaining such details in the sessions on the server side.
	

	
	3
	JWT is the most common and favorite token type that many systems use these days due to its special features and advantages.
	

	ㅇ
	4
	JWT is a token implementation which will be in the XML format and designed to use for the web requests.
	

	3
	
	Which of the following is the correct order of 3 parts present inside JWT tokens?
	

	
	1
	Header.Signature.Payload
	

	ㅇ
	2
	Header.Payload.Signature
	

	
	3
	Signature.Header.Payload
	

	4
	
	Which of the following part of JWT token is optional?

	

	
	1
	Header
	

	
	2
	Body/Payload
	

	
	3
	Signature
	

	5
	
	Which of the following best describes about header part inside JWT tokens?

	

	
	1
	Inside the header of JWT token, we can store details related to user, roles etc. which can be used later for AuthN and AuthZ.

	

	ㅇ
	2
	Inside the header of JWT token, we store metadata/info related to the token. If I chose to sign the token, the header contains the name of the algorithm that generates the signature.

	

	
	
	The header is used to verify the token wasn't changed along the way, and, in the case of tokens signed with a private key, it can also verify that the sender of the JWT is who it says it is.

	

11) [bookmark: _Toc150331987] 퀴즈10
	문제
	보기
	2
	

	1
	
	Which of the following annotation should be used on top of the configuration class to enable method level security using Spring Security framework?
	

	1
	1
	@EnableMethodSecurity(prePostEnabled = true, securedEnabled = true, jsr250Enabled = true)

	

	
	2
	@EnableSecurity(prePostEnabled = true, securedEnabled = true, jsr250Enabled = true)

	

	
	3
	@EnableGlobalFunctionSecurity(prePostEnabled = true, securedEnabled = true, jsr250Enabled = true)

	

	2
	
	Which of the following code is correct if we want to make sure that a user is authorized or not to invoke a given method?

	

	
	1
	@PreAuthorize("hasRole(‘admin’)”)
public Loan getLoanDetails(String username) {
 return loanRepository.loadLoanByUserName(username);
}

	

	
	2
	@PreAuth("hasRole(‘admin’)”)
public Loan getLoanDetails(String username) {
 return loanRepository.loadLoanByUserName(username);
}

	

	
	3
	@PreAuthority("hasRole(‘admin’)”)
public Loan getLoanDetails(String username) {
 return loanRepository.loadLoanByUserName(username);
}

	

12) [bookmark: _Toc150331988]퀴즈11
	문제
	보기
	6
	

	1
	
	Which of the following is not a component of OAUTH2?
	

	
	1
	Resource Server
	

	
	2
	Authorization Server
	

	
	3
	Resource Owner (User)
	

	
	4
	Client
	

	ㅇ
	5
	Source Owner
	

	2
	
	Which of the following is not a valid OAuth2 grants & flows type to generate a token from Auth Server?
	

	
	1
	Authorization Code grant type
	

	
	2
	Implicit grant type
	

	ㅇ
	3
	Explicit grant type
	

	
	4
	Refresh Token grant type
	

	3
	
	Which of the following OAUTH2 grant type will be used where no user and UI involved. Like in the scenarios where 2 different applications want to share data between them using backend APIs ?
	

	
	1
	Implicit Grant type
	

	ㅇ
	2
	Client Credentials Grant type
	

	
	3
	Refresh Token Grant type
	

	
	4
	Resource Owner password credentials Grant type
	

	4
	
	Which of the following OAUTH2 grant type will be used in the scenarios where the access token of the user is expired ?
	

	
	1
	Authorization Code Grant type
	

	
	2
	Client Credentials Grant type
	

	
	3
	Refresh token Grant type
	

	
	4
	Implicit token Grant type
	

	5
	
	Which of the below problems can be resolved using OAUTH2 implementation inside any web application?
	

	
	1
	The client need to send the user credentials every time and authentication logic has to be executed every time with all the requests.
	

	
	2
	The authentication and authorization logic being maintained in different places.
	

	
	3
	All of the above
	

	6
	
	In an OAuth2 authorization request, in addition to the client id, client secret what is also submitted to the authorization server?
	

	
	1
	Access Token
	

	
	2
	Refresh Token
	

	ㅇ
	3
	Redirect URI
	

13) [bookmark: _Toc150331989] 퀴즈12
	문제
	보기
	2
	

	1
	
	Which of the following SpringBoot starter project dependency should be used to integrate with OAuth2 as a client ?

	

	
	1
	<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-oauth2</artifactId>
</dependency>

	

	
	2
	<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-oauth2-client</artifactId>
</dependency>

	

	ㅇ
	3
	<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-oauth-client</artifactId>
</dependency>

	

	2
	
	Which of the following enum class can be used to configure most famous social login Auth providers like Google, GitHub, FaceBook etc ?

	

	ㅇ
	1
	CommonOAuth2Provider

	

	
	2
	CommonAuthProvider

	

	
	3
	OAuth2Provider

	

14) [bookmark: _Toc150331990]퀴즈13
	문제
	보기
	6
	

	1
	
	Which of the following statement is TRUE about KeyCloak ?

	

	
	1
	KeyCloak is a commercial identity and access management product

	

	
	2
	KeyCloak supports only OAUTH2 but not OpenID Connect

	

	ㅇ
	3
	KeyCloak is a Open Source Identity and Access Management product which allows adding authentication to applications and secure services with minimum fuss.

	

	2
	
	Which of the following features provided by KeyCloak server ?

	

	
	1
	User Federation
	

	
	2
	Social Login
	

	
	3
	Centralized Management for admins and users
	

	ㅇ
	4
	All of the above
	

	3
	
	Which of the following statement is TRUE regarding OpenID Connect ?
	

	ㅇ
	1
	OpenID Connect is a protocol that sits on top of the OAuth 2.0 framework
	

	
	2
	OpenID Connect is a protocol that sits on top of the HTTP
	

	
	3
	OpenID Connect handles Authorization
	

	4
	
	When we adopt OpenID connect, which of the below tokens can be expected from authorization server ?
	

	
	1
	Access token
	

	
	2
	ID token
	

	ㅇ
	3
	Access token & ID token
	

	5
	
	Which of the following OAUTH2 grant flow can be used for API-API invocations where there is no end user involved ?
	

	
	1
	Authorization Code
	

	ㅇ
	2
	Client Credentials
	

	
	3
	Implicit
	

	
	4
	Refresh Token
	

	6
	
	Which of the following OAUTH2 grant flow can be used when a public facing client applications like native and single-page applications are involved ?
	

	
	1
	Implicit
	

	
	2
	Client Credentials
	

	
	3
	Authorization Code
	

	ㅇ
	4
	Authorization Code with Proof Key for Code Exchange (PKCE)
	

image3.png

image4.png

image5.jpeg

image6.png

image7.png

image8.png

image1.png

image2.png

